-
gps_st • Show schema
Hide schema
{'component_group': '1.1', 'component_group_number': 1, 'components': 1, 'counts': [], 'degree': 2, 'fourth_trace_moment': 2, 'gens': [], 'identity_component': 'SU(2)', 'label': '1.2.A.1.1a', 'label_components': [1, 2, 0, 1, 1, 0], 'maximal': True, 'moments': [['a_1', 1, 0, 1, 0, 2, 0, 5, 0, 14, 0, 42, 0, 132]], 'name': 'SU(2)', 'old_label': '1.2.3.1.1a', 'pretty': '\\mathrm{SU}(2)', 'rational': True, 'real_dimension': 3, 'second_trace_moment': 1, 'st0_label': '1.2.A', 'subgroup_multiplicities': [], 'subgroups': [], 'supgroups': [], 'trace_histogram': '', 'trace_zero_density': '0', 'weight': 1, 'zvector': [0]}
-
gps_st0 • Show schema
Hide schema
{'degree': 2, 'description': '\\left\\{\\begin{bmatrix}\\alpha&\\beta\\\\-\\bar\\beta&\\bar\\alpha\\end{bmatrix}:\\alpha\\bar\\alpha+\\beta\\bar\\beta = 1,\\ \\alpha,\\beta\\in\\mathbb{C}\\right\\}', 'hodge_circle': 'u\\mapsto\\mathrm{diag}(u,\\bar u)', 'label': '1.2.A', 'label_components': [1, 2, 0], 'name': 'SU(2)', 'pretty': '\\mathrm{SU}(2)', 'real_dimension': 3, 'symplectic_form': '\\begin{bmatrix}0&1\\\\-1&0\\end{bmatrix}', 'weight': 1}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': True, 'abelian': True, 'abelian_quotient': '1.1', 'all_subgroups_known': True, 'almost_simple': False, 'aut_gens': [], 'aut_group': '1.1', 'aut_order': 1, 'aut_stats': [[1, 1, 1, 1]], 'cc_stats': [[1, 1, 1]], 'center_label': '1.1', 'central_product': False, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': True, 'complex_characters_known': True, 'composition_factors': [], 'composition_length': 0, 'counter': 1, 'cyclic': True, 'derived_length': 0, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 1, 'exponent': 1, 'exponents_of_order': [], 'factors_of_aut_order': [], 'factors_of_order': [], 'faithful_reps': [[1, 1, 1]], 'frattini_label': '1.1', 'frattini_quotient': '1.1', 'hash': 1, 'hyperelementary': 1, 'irrC_degree': 1, 'irrQ_degree': 1, 'irrQ_dim': 1, 'irrR_degree': 1, 'irrep_stats': [[1, 1]], 'label': '1.1', 'linC_count': 1, 'linC_degree': 0, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 0, 'linQ_degree_count': 1, 'linQ_dim': 0, 'linQ_dim_count': 1, 'linR_count': 1, 'linR_degree': 0, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C1', 'ngens': 0, 'nilpotency_class': 0, 'nilpotent': True, 'normal_counts': None, 'normal_index_bound': None, 'normal_order_bound': None, 'normal_subgroups_known': True, 'number_autjugacy_classes': 1, 'number_characteristic_subgroups': 1, 'number_conjugacy_classes': 1, 'number_divisions': 1, 'number_normal_subgroups': 1, 'number_subgroup_autclasses': 1, 'number_subgroup_classes': 1, 'number_subgroups': 1, 'old_label': None, 'order': 1, 'order_factorization_type': 0, 'order_stats': [[1, 1]], 'outer_equivalence': False, 'outer_group': '1.1', 'outer_order': 1, 'pc_rank': 0, 'perfect': True, 'permutation_degree': 1, 'pgroup': 1, 'primary_abelian_invariants': [], 'quasisimple': False, 'rank': 0, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 1]], 'representations': {'PC': {'code': 0, 'gens': [], 'pres': []}, 'Perm': {'d': 1, 'gens': []}}, 'schur_multiplier': [], 'semidirect_product': False, 'simple': False, 'smith_abelian_invariants': [], 'solvability_type': 0, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_1', 'transitive_degree': 1, 'wreath_data': None, 'wreath_product': False}