Properties

Label 8.2.1.d6
  
Name \(\mathrm{U}(1)[D_{6}]\)
Weight 8
Degree 2
Real dimension 1
Components 12
Contained in \(\mathrm{U}(2)\)
Identity Component \(\mathrm{U}(1)\)
Component group \(D_{6}\)

Learn more about

Invariants

Weight:$8$
Degree:$2$
$\mathbb{R}$-dimension:$1$
Components:$12$
Contained in:$\mathrm{U}(2)$
Rational:$\mathrm{False}$

Identity Component

Name:$\mathrm{U}(1)$
Index:$12$
$\mathbb{R}$-dimension:$1$
Description:$\left\{\begin{bmatrix}\alpha&0\\0&\bar\alpha\end{bmatrix}:\alpha\bar\alpha = 1,\ \alpha\in\mathbb{C}\right\}$

Component Group

Name:$D_{6}$
Order:$12$
Abelian:$\mathrm{False}$
Generators:$\left\{\begin{bmatrix} 0 & 1\\ -1 & 0\end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & \zeta_{6}\end{bmatrix}\right\}$

Subgroups and Supergroups

Maximal Subgroups:$\mathrm{U}(1)[D_{3}]$, $\mathrm{U}(1)[D_{2}]$
Minimal Supergroups:$\mathrm{U}(1)[D_{12}]$, $\mathrm{U}(1)[D_{18}]$, $\mathrm{U}(1)[D_{30}]$, $\ldots$

Moment Statistics

$x$ $\mathrm{E}[x^{0}]$ $\mathrm{E}[x^{1}]$ $\mathrm{E}[x^{2}]$ $\mathrm{E}[x^{3}]$ $\mathrm{E}[x^{4}]$ $\mathrm{E}[x^{5}]$ $\mathrm{E}[x^{6}]$ $\mathrm{E}[x^{7}]$ $\mathrm{E}[x^{8}]$ $\mathrm{E}[x^{9}]$ $\mathrm{E}[x^{10}]$ $\mathrm{E}[x^{11}]$ $\mathrm{E}[x^{12}]$
$a_1$ $1$ $0$ $0$ $0$ $0$ $0$ $10$ $0$ $0$ $0$ $0$ $0$ $462$