# Properties

 Label 1.6.G.2.1a Name $$F_{ab}\times \mathrm{SU}(2)$$ Weight $1$ Degree $6$ Real dimension $5$ Components $2$ Contained in $$\mathrm{USp}(6)$$ Identity component $$\mathrm{U}(1)^2\times\mathrm{SU}(2)$$ Component group $$C_2$$

## Invariants

 Weight: $1$ Degree: $6$ $\mathbb{R}$-dimension: $5$ Components: $2$ Contained in: $\mathrm{USp}(6)$ Rational: yes

## Identity component

 Name: $\mathrm{U}(1)^2\times\mathrm{SU}(2)$ $\mathbb{R}$-dimension: $5$ Description: $\left\{\begin{bmatrix}A&0&0\\0&B&0\\0&0&C\end{bmatrix}: A,B\in\mathrm{U}(1)\subseteq\mathrm{SU}(2),C\in\mathrm{SU}(2)\right\}$ Symplectic form: $\begin{bmatrix}J_2&0&0\\0&J_2&0\\0&0&J_2\end{bmatrix},\ J_2:=\begin{bmatrix}0&1\\-1&0\end{bmatrix}$ Hodge circle: $u\mapsto\mathrm{diag}(u,\bar u, u, \bar u, u, \bar u)$

## Component group

 Name: $C_2$ Order: $2$ Abelian: yes Generators: $\begin{bmatrix}0 & 1 & 0 & 0 & 0 & 0 \\-1 & 0 & 0 & 0 & 0 & 0 \\0 & 0 & 0 & 1 & 0 & 0 \\0 & 0 & -1 & 0 & 0 & 0 \\0 & 0 & 0 & 0 & 1 & 0 \\0 & 0 & 0 & 0 & 0 & 1\\\end{bmatrix}$

## Moment sequences

$x$ $\mathrm{E}[x^{0}]$ $\mathrm{E}[x^{1}]$ $\mathrm{E}[x^{2}]$ $\mathrm{E}[x^{3}]$ $\mathrm{E}[x^{4}]$ $\mathrm{E}[x^{5}]$ $\mathrm{E}[x^{6}]$ $\mathrm{E}[x^{7}]$ $\mathrm{E}[x^{8}]$ $\mathrm{E}[x^{9}]$ $\mathrm{E}[x^{10}]$ $\mathrm{E}[x^{11}]$ $\mathrm{E}[x^{12}]$
$a_1$ $1$ $0$ $3$ $0$ $32$ $0$ $535$ $0$ $10864$ $0$ $246204$ $0$ $6002436$
$a_2$ $1$ $3$ $13$ $75$ $567$ $5133$ $51639$ $553689$ $6197235$ $71607561$ $848452095$ $10261640865$ $126261833949$
$a_3$ $1$ $0$ $14$ $0$ $1316$ $0$ $223520$ $0$ $47638780$ $0$ $11539829280$ $0$ $3041202959520$