Properties

Label 1.4.F.12.5a
  
Name \(J(C_6)\)
Weight $1$
Degree $4$
Real dimension $1$
Components $12$
Contained in \(\mathrm{USp}(4)\)
Identity component \(\mathrm{U}(1)_2\)
Component group \(C_2\times C_6\)

Learn more

Invariants

Weight:$1$
Degree:$4$
$\mathbb{R}$-dimension:$1$
Components:$12$
Contained in:$\mathrm{USp}(4)$
Rational:yes

Identity component

Name:$\mathrm{U}(1)_2$
$\mathbb{R}$-dimension:$1$
Description:$\left\{\begin{bmatrix}\alpha I_2&0\\0&\bar\alpha I_2\end{bmatrix}: \alpha\bar\alpha = 1,\ \alpha\in\mathbb{C}\right\}$ Symplectic form:$\begin{bmatrix}0&I_2\\-I_2&0\end{bmatrix}$
Hodge circle:$u\mapsto\mathrm{diag}(u, u,\bar u,\bar u)$

Component group

Name:$C_2\times C_6$
Order:$12$
Abelian:yes
Generators:$\begin{bmatrix}\zeta_{12}&0&0&0\\0&\zeta_{12}^{11}&0&0\\0&0&\zeta_{12}^{11}&0\\0&0&0&\zeta_{12}\end{bmatrix}, \begin{bmatrix}0&0&0&1\\0&0&-1&0\\0&-1&0&0\\1&0&0&0\end{bmatrix}$

Subgroups and supergroups

Maximal subgroups:$J(C_2)$, $C_6$, $J(C_3)$, $C_{6,1}$
Minimal supergroups:$J(D_6)$

Moment sequences

$x$ $\mathrm{E}[x^{0}]$ $\mathrm{E}[x^{1}]$ $\mathrm{E}[x^{2}]$ $\mathrm{E}[x^{3}]$ $\mathrm{E}[x^{4}]$ $\mathrm{E}[x^{5}]$ $\mathrm{E}[x^{6}]$ $\mathrm{E}[x^{7}]$ $\mathrm{E}[x^{8}]$ $\mathrm{E}[x^{9}]$ $\mathrm{E}[x^{10}]$ $\mathrm{E}[x^{11}]$ $\mathrm{E}[x^{12}]$
$a_1$ $1$ $0$ $2$ $0$ $18$ $0$ $200$ $0$ $2450$ $0$ $31752$ $0$ $427812$
$a_2$ $1$ $1$ $5$ $16$ $77$ $356$ $1804$ $9262$ $48941$ $262372$ $1427300$ $7850822$ $43608492$

Moment simplex

$\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}\right]:\sum ie_i=2\right)\colon$ $1$ $2$
$\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}\right]:\sum ie_i=4\right)\colon$ $5$ $8$ $18$
$\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}\right]:\sum ie_i=6\right)\colon$ $16$ $36$ $84$ $200$
$\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}\right]:\sum ie_i=8\right)\colon$ $77$ $172$ $412$ $1000$ $2450$
$\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}\right]:\sum ie_i=10\right)\colon$ $356$ $856$ $2088$ $5140$ $12740$ $31752$
$\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}\right]:\sum ie_i=12\right)\colon$ $1804$ $4386$ $10842$ $26980$ $67494$ $169596$ $427812$

Moment matrix

$\mathrm{E}\left[\chi_i\chi_j\right] = \begin{bmatrix}1&0&0&1&0&2&0&1&0&0\\0&2&0&0&4&0&4&0&6&0\\0&0&4&2&0&1&0&9&0&8\\1&0&2&7&0&7&0&12&0&6\\0&4&0&0&12&0&12&0&20&0\\2&0&1&7&0&12&0&12&0&5\\0&4&0&0&12&0&14&0&22&0\\1&0&9&12&0&12&0&39&0&29\\0&6&0&0&20&0&22&0&40&0\\0&0&8&6&0&5&0&29&0&30\end{bmatrix}$

$\ \ \ \mathrm{E}\left[\chi_i^2\right] = \begin{bmatrix}1&2&4&7&12&12&14&39&40&30\end{bmatrix}$

Event probabilities

$-$$a_2\in\mathbb{Z}$$a_2=-2$$a_2=-1$$a_2=0$$a_2=1$$a_2=2$
$-$$1$$1/2$$1/12$$1/6$$0$$1/6$$1/12$
$a_1=0$$7/12$$1/2$$1/12$$1/6$$0$$1/6$$1/12$