Properties

Label 1.4.D.4.1a
  
Name \(F_{ac}\)
Weight $1$
Degree $4$
Real dimension $2$
Components $4$
Contained in \(\mathrm{USp}(4)\)
Identity component \(\mathrm{U}(1)\times\mathrm{U}(1)\)
Component group \(C_4\)

Learn more

Invariants

Weight:$1$
Degree:$4$
$\mathbb{R}$-dimension:$2$
Components:$4$
Contained in:$\mathrm{USp}(4)$
Rational:yes

Identity component

Name:$\mathrm{U}(1)\times\mathrm{U}(1)$
$\mathbb{R}$-dimension:$2$
Description:$\left\{\begin{bmatrix}A&0\\0&B\end{bmatrix}:A,B\in \mathrm{U}(1)\subseteq\mathrm{SU}(2)\right\}$ Symplectic form:$\begin{bmatrix}J_2&0\\0&J_2\end{bmatrix}, J_2:=\begin{bmatrix}0&1\\-1&0\end{bmatrix}$
Hodge circle:$u\mapsto\mathrm{diag}(u,\bar u,\bar u,u)$

Component group

Name:$C_4$
Order:$4$
Abelian:yes
Generators:$\begin{bmatrix}0&0&0&1\\0&0&-1&0\\-1&0&0&0\\0&-1&0&0\end{bmatrix}$

Subgroups and supergroups

Maximal subgroups:$F_{ab}$
Minimal supergroups:

Moment sequences

$x$ $\mathrm{E}[x^{0}]$ $\mathrm{E}[x^{1}]$ $\mathrm{E}[x^{2}]$ $\mathrm{E}[x^{3}]$ $\mathrm{E}[x^{4}]$ $\mathrm{E}[x^{5}]$ $\mathrm{E}[x^{6}]$ $\mathrm{E}[x^{7}]$ $\mathrm{E}[x^{8}]$ $\mathrm{E}[x^{9}]$ $\mathrm{E}[x^{10}]$ $\mathrm{E}[x^{11}]$ $\mathrm{E}[x^{12}]$
$a_1$ $1$ $0$ $1$ $0$ $9$ $0$ $100$ $0$ $1225$ $0$ $15876$ $0$ $213444$
$a_2$ $1$ $1$ $3$ $10$ $41$ $186$ $912$ $4656$ $24425$ $130402$ $705368$ $3854016$ $21230420$

Moment simplex

$\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}\right]:\sum ie_i=2\right)\colon$ $1$ $1$
$\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}\right]:\sum ie_i=4\right)\colon$ $3$ $4$ $9$
$\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}\right]:\sum ie_i=6\right)\colon$ $10$ $18$ $42$ $100$
$\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}\right]:\sum ie_i=8\right)\colon$ $41$ $86$ $206$ $500$ $1225$
$\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}\right]:\sum ie_i=10\right)\colon$ $186$ $428$ $1044$ $2570$ $6370$ $15876$
$\left(\mathrm{E}\left[a_1^{e_1}a_2^{e_2}\right]:\sum ie_i=12\right)\colon$ $912$ $2192$ $5418$ $13480$ $33712$ $84672$ $213444$

Moment matrix

$\mathrm{E}\left[\chi_i\chi_j\right] = \begin{bmatrix}1&0&0&0&0&1&0&1&0&1\\0&1&0&0&2&0&2&0&3&0\\0&0&2&1&0&2&0&3&0&3\\0&0&1&4&0&2&0&7&0&3\\0&2&0&0&6&0&6&0&10&0\\1&0&2&2&0&5&0&7&0&6\\0&2&0&0&6&0&7&0&11&0\\1&0&3&7&0&7&0&19&0&12\\0&3&0&0&10&0&11&0&20&0\\1&0&3&3&0&6&0&12&0&11\end{bmatrix}$

$\ \ \ \mathrm{E}\left[\chi_i^2\right] = \begin{bmatrix}1&1&2&4&6&5&7&19&20&11\end{bmatrix}$

Event probabilities

$-$$a_2\in\mathbb{Z}$$a_2=-2$$a_2=-1$$a_2=0$$a_2=1$$a_2=2$
$-$$1$$3/4$$0$$0$$1/2$$0$$1/4$
$a_1=0$$3/4$$3/4$$0$$0$$1/2$$0$$1/4$