Invariants
| Weight: | $1$ |
| Degree: | $4$ |
| $\mathbb{R}$-dimension: | $1$ |
| Components: | $12$ |
| Contained in: | $\mathrm{USp}(4)$ |
| Rational: | $\mathrm{True}$ |
Identity Component
| Name: | $\mathrm{U}(1)_2$ |
| Index: | $12$ |
| $\mathbb{R}$-dimension: | $1$ |
| Description: | $\left\{\begin{bmatrix}\mathrm{diag}_2(\alpha)&0\\0&\mathrm{diag}_2(\bar\alpha)\end{bmatrix}: \alpha\bar\alpha = 1,\ \alpha\in\mathbb{C}\right\},\ \mathrm{diag}_2(\alpha):=\begin{bmatrix}\alpha&0\\0&\alpha\end{bmatrix}$ |
Component Group
| Name: | $A_4$ |
| Order: | $12$ |
| Abelian: | $\mathrm{False}$ |
Subgroups and Supergroups
| Maximal Subgroups: | $C_3$, $D_2$ |
| Minimal Supergroups: | $O$, $O_1$, $J(T)$ |
Moment Statistics
| $x$ | $\mathrm{E}[x^{0}]$ | $\mathrm{E}[x^{1}]$ | $\mathrm{E}[x^{2}]$ | $\mathrm{E}[x^{3}]$ | $\mathrm{E}[x^{4}]$ | $\mathrm{E}[x^{5}]$ | $\mathrm{E}[x^{6}]$ | $\mathrm{E}[x^{7}]$ | $\mathrm{E}[x^{8}]$ | $\mathrm{E}[x^{9}]$ | $\mathrm{E}[x^{10}]$ | $\mathrm{E}[x^{11}]$ | $\mathrm{E}[x^{12}]$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_1$ | $1$ | $0$ | $2$ | $0$ | $12$ | $0$ | $120$ | $0$ | $1540$ | $0$ | $21672$ | $0$ | $316008$ |
| $a_2$ | $1$ | $1$ | $4$ | $12$ | $52$ | $236$ | $1202$ | $6378$ | $35044$ | $195924$ | $1108834$ | $6323978$ | $36271314$ |
Event Probabilities
| $\mathrm{P}[a_1=0]=\frac{3}{12}$ |