# Properties

 Label 1.2.1.d3 Name $$\mathrm{U}(1)[D_{3}]$$ Weight $1$ Degree $2$ Real dimension $1$ Components $6$ Contained in $$\mathrm{USp}(2)$$ Identity component $$\mathrm{U}(1)$$ Component group $$S_3$$

# Learn more

## Invariants

 Weight: $1$ Degree: $2$ $\mathbb{R}$-dimension: $1$ Components: $6$ Contained in: $\mathrm{USp}(2)$ Rational: yes

## Identity component

 Name: $\mathrm{U}(1)$ $\mathbb{R}$-dimension: $1$ Description: $\left\{\begin{bmatrix}\alpha&0\\0&\bar\alpha\end{bmatrix}:\alpha\bar\alpha = 1,\ \alpha\in\mathbb{C}\right\}$ Symplectic form: $\begin{bmatrix}0&1\\-1&0\end{bmatrix}$ Hodge circle: $u\mapsto\mathrm{diag}(u,\bar u)$

## Component group

 Name: $S_3$ Order: $6$ Abelian: no Generators: $\begin{bmatrix}0&1\\-1&0\end{bmatrix}, \begin{bmatrix}1&0\\0&\zeta_{3}\end{bmatrix}$

## Subgroups and supergroups

 Maximal subgroups: 1.2.B.D1 Minimal supergroups: 1.2.B.D6, 1.2.B.D9, 1.2.B.D15, $\cdots$

## Moment sequences

$x$ $\mathrm{E}[x^{0}]$ $\mathrm{E}[x^{1}]$ $\mathrm{E}[x^{2}]$ $\mathrm{E}[x^{3}]$ $\mathrm{E}[x^{4}]$ $\mathrm{E}[x^{5}]$ $\mathrm{E}[x^{6}]$ $\mathrm{E}[x^{7}]$ $\mathrm{E}[x^{8}]$ $\mathrm{E}[x^{9}]$ $\mathrm{E}[x^{10}]$ $\mathrm{E}[x^{11}]$ $\mathrm{E}[x^{12}]$
$a_1$ $1$ $0$ $0$ $0$ $0$ $0$ $10$ $0$ $0$ $0$ $0$ $0$ $462$