Properties

Label 1.2.B.d100
  
Name \(\mathrm{U}(1)[D_{100}]\)
Weight $1$
Degree $2$
Real dimension $1$
Components $200$
Contained in \(\mathrm{U}(2)\)
Identity component \(\mathrm{U}(1)\)
Component group \(D_{100}\)

Learn more

Invariants

Weight:$1$
Degree:$2$
$\mathbb{R}$-dimension:$1$
Components:$200$
Contained in:$\mathrm{U}(2)$
Rational:no

Identity component

Name:$\mathrm{U}(1)$
$\mathbb{R}$-dimension:$1$
Description:$\left\{\begin{bmatrix}\alpha&0\\0&\bar\alpha\end{bmatrix}:\alpha\bar\alpha = 1,\ \alpha\in\mathbb{C}\right\}$ Symplectic form:$\begin{bmatrix}0&1\\-1&0\end{bmatrix}$
Hodge circle:$u\mapsto \mathrm{diag}(u,u^{-1})$

Component group

Name:$D_{100}$
Order:$200$
Abelian:no
Generators:$\left\{\begin{bmatrix} 0 & 1\\ -1 & 0\end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & \zeta_{100}\end{bmatrix}\right\}$

Subgroups and supergroups

Maximal subgroups:$\mathrm{U}(1)[D_{50}]$, $\mathrm{U}(1)[D_{20}]$
Minimal supergroups:$\mathrm{U}(1)[D_{200}]$, $\mathrm{U}(1)[D_{300}]$, $\mathrm{U}(1)[D_{500}]$, $\ldots$

Moment sequences

$x$ $\mathrm{E}[x^{0}]$ $\mathrm{E}[x^{1}]$ $\mathrm{E}[x^{2}]$ $\mathrm{E}[x^{3}]$ $\mathrm{E}[x^{4}]$ $\mathrm{E}[x^{5}]$ $\mathrm{E}[x^{6}]$ $\mathrm{E}[x^{7}]$ $\mathrm{E}[x^{8}]$ $\mathrm{E}[x^{9}]$ $\mathrm{E}[x^{10}]$ $\mathrm{E}[x^{11}]$ $\mathrm{E}[x^{12}]$
$a_1$ $1$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$