Properties

Label 1.2.A.c251
  
Name \(\mathrm{SU}(2)[C_{251}]\)
Weight $1$
Degree $2$
Real dimension $3$
Components $251$
Contained in \(\mathrm{U}(2)\)
Identity component \(\mathrm{SU}(2)\)
Component group \(C_{251}\)

Learn more about

Invariants

Weight:$1$
Degree:$2$
$\mathbb{R}$-dimension:$3$
Components:$251$
Contained in:$\mathrm{U}(2)$
Rational:no

Identity component

Name:$\mathrm{SU}(2)$
$\mathbb{R}$-dimension:$3$
Description:$\left\{\begin{bmatrix}\alpha&\beta\\-\bar\beta&\bar\alpha\end{bmatrix}:\alpha\bar\alpha+\beta\bar\beta = 1,\ \alpha,\beta\in\mathbb{C}\right\}$ Symplectic form:$\begin{bmatrix}0&1\\-1&0\end{bmatrix}$
Hodge circle:$u\mapsto \mathrm{diag}(u,u^{-1})$

Component group

Name:$C_{251}$
Order:$251$
Abelian:yes
Generators:$\begin{bmatrix} 1 & 0 \\ 0 & \zeta_{251}\end{bmatrix}$

Subgroups and supergroups

Maximal subgroups:$\mathrm{SU}(2)$
Minimal supergroups:$\mathrm{SU}(2)[C_{502}]$, $\mathrm{SU}(2)[C_{753}]$, $\mathrm{SU}(2)[C_{1255}]$, $\ldots$

Moment sequences

$x$ $\mathrm{E}[x^{0}]$ $\mathrm{E}[x^{1}]$ $\mathrm{E}[x^{2}]$ $\mathrm{E}[x^{3}]$ $\mathrm{E}[x^{4}]$ $\mathrm{E}[x^{5}]$ $\mathrm{E}[x^{6}]$ $\mathrm{E}[x^{7}]$ $\mathrm{E}[x^{8}]$ $\mathrm{E}[x^{9}]$ $\mathrm{E}[x^{10}]$ $\mathrm{E}[x^{11}]$ $\mathrm{E}[x^{12}]$
$a_1$ $1$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$