# Properties

 Label 1.2.A.c251 Name $$\mathrm{SU}(2)[C_{251}]$$ Weight $1$ Degree $2$ Real dimension $3$ Components $251$ Contained in $$\mathrm{U}(2)$$ Identity component $$\mathrm{SU}(2)$$ Component group $$C_{251}$$

## Invariants

 Weight: $1$ Degree: $2$ $\mathbb{R}$-dimension: $3$ Components: $251$ Contained in: $\mathrm{U}(2)$ Rational: no

## Identity component

 Name: $\mathrm{SU}(2)$ $\mathbb{R}$-dimension: $3$ Description: $\left\{\begin{bmatrix}\alpha&\beta\\-\bar\beta&\bar\alpha\end{bmatrix}:\alpha\bar\alpha+\beta\bar\beta = 1,\ \alpha,\beta\in\mathbb{C}\right\}$ Symplectic form: $\begin{bmatrix}0&1\\-1&0\end{bmatrix}$ Hodge circle: $u\mapsto \mathrm{diag}(u,u^{-1})$

## Component group

 Name: $C_{251}$ Order: $251$ Abelian: yes Generators: $\begin{bmatrix} 1 & 0 \\ 0 & \zeta_{251}\end{bmatrix}$

## Moment sequences

$x$ $\mathrm{E}[x^{0}]$ $\mathrm{E}[x^{1}]$ $\mathrm{E}[x^{2}]$ $\mathrm{E}[x^{3}]$ $\mathrm{E}[x^{4}]$ $\mathrm{E}[x^{5}]$ $\mathrm{E}[x^{6}]$ $\mathrm{E}[x^{7}]$ $\mathrm{E}[x^{8}]$ $\mathrm{E}[x^{9}]$ $\mathrm{E}[x^{10}]$ $\mathrm{E}[x^{11}]$ $\mathrm{E}[x^{12}]$
$a_1$ $1$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$