Properties

Label 0.1.95659380
  
Name \(\mu(95659380)\)
Weight 0
Degree 1
Real dimension 0
Components 95659380
Contained in \(\mathrm{U}(1)\)
Identity Component \(\mathrm{SO}(1)\)
Component group \(C_{95659380}\)

Learn more about

Invariants

Weight:$0$
Degree:$1$
$\mathbb{R}$-dimension:$0$
Components:$95659380$
Contained in:$\mathrm{U}(1)$
Rational:$\mathrm{False}$

Identity Component

Name:$\mathrm{SO}(1)$
Index:$95659380$
$\mathbb{R}$-dimension:$0$
Description:$\mathrm{trivial}$

Component Group

Name:$C_{95659380}$
Order:$95659380$
Abelian:$\mathrm{True}$
Generators:$\left[\zeta_{95659380}\right]$

Subgroups and Supergroups

Maximal Subgroups:$\mu(47829690)$, $\mu(31886460)$, $\mu(19131876)$
Minimal Supergroups:$\mu(191318760)$, $\mu(286978140)$, $\mu(478296900)$, $\ldots$

Moment Statistics

$x$ $\mathrm{E}[x^{0}]$ $\mathrm{E}[x^{1}]$ $\mathrm{E}[x^{2}]$ $\mathrm{E}[x^{3}]$ $\mathrm{E}[x^{4}]$ $\mathrm{E}[x^{5}]$ $\mathrm{E}[x^{6}]$ $\mathrm{E}[x^{7}]$ $\mathrm{E}[x^{8}]$ $\mathrm{E}[x^{9}]$ $\mathrm{E}[x^{10}]$ $\mathrm{E}[x^{11}]$ $\mathrm{E}[x^{12}]$
$a_1$ $1$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$

Event Probabilities

$\mathrm{P}[a_1=1]=\frac{1}{95659380}$
$\mathrm{P}[a_1=-1]=\frac{1}{95659380}$