Properties

Label 0.1.680244480
  
Name \(\mu(680244480)\)
Weight 0
Degree 1
Real dimension 0
Components 680244480
Contained in \(\mathrm{U}(1)\)
Identity Component \(\mathrm{SO}(1)\)
Component group \(C_{680244480}\)

Learn more about

Invariants

Weight:$0$
Degree:$1$
$\mathbb{R}$-dimension:$0$
Components:$680244480$
Contained in:$\mathrm{U}(1)$
Rational:$\mathrm{False}$

Identity Component

Name:$\mathrm{SO}(1)$
Index:$680244480$
$\mathbb{R}$-dimension:$0$
Description:$\mathrm{trivial}$

Component Group

Name:$C_{680244480}$
Order:$680244480$
Abelian:$\mathrm{True}$
Generators:$\left[\zeta_{680244480}\right]$

Subgroups and Supergroups

Maximal Subgroups:$\mu(340122240)$, $\mu(226748160)$, $\mu(136048896)$
Minimal Supergroups:$\mu(1360488960)$, $\mu(2040733440)$, $\mu(3401222400)$, $\ldots$

Moment Statistics

$x$ $\mathrm{E}[x^{0}]$ $\mathrm{E}[x^{1}]$ $\mathrm{E}[x^{2}]$ $\mathrm{E}[x^{3}]$ $\mathrm{E}[x^{4}]$ $\mathrm{E}[x^{5}]$ $\mathrm{E}[x^{6}]$ $\mathrm{E}[x^{7}]$ $\mathrm{E}[x^{8}]$ $\mathrm{E}[x^{9}]$ $\mathrm{E}[x^{10}]$ $\mathrm{E}[x^{11}]$ $\mathrm{E}[x^{12}]$
$a_1$ $1$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$

Event Probabilities

$\mathrm{P}[a_1=1]=\frac{1}{680244480}$
$\mathrm{P}[a_1=-1]=\frac{1}{680244480}$