Properties

Label 0.1.679477248
  
Name \(\mu(679477248)\)
Weight 0
Degree 1
Real dimension 0
Components 679477248
Contained in \(\mathrm{U}(1)\)
Identity Component \(\mathrm{SO}(1)\)
Component group \(C_{679477248}\)

Learn more about

Invariants

Weight:$0$
Degree:$1$
$\mathbb{R}$-dimension:$0$
Components:$679477248$
Contained in:$\mathrm{U}(1)$
Rational:$\mathrm{False}$

Identity Component

Name:$\mathrm{SO}(1)$
Index:$679477248$
$\mathbb{R}$-dimension:$0$
Description:$\mathrm{trivial}$

Component Group

Name:$C_{679477248}$
Order:$679477248$
Abelian:$\mathrm{True}$
Generators:$\left[\zeta_{679477248}\right]$

Subgroups and Supergroups

Maximal Subgroups:$\mu(339738624)$, $\mu(226492416)$
Minimal Supergroups:$\mu(1358954496)$, $\mu(2038431744)$, $\mu(3397386240)$, $\ldots$

Moment Statistics

$x$ $\mathrm{E}[x^{0}]$ $\mathrm{E}[x^{1}]$ $\mathrm{E}[x^{2}]$ $\mathrm{E}[x^{3}]$ $\mathrm{E}[x^{4}]$ $\mathrm{E}[x^{5}]$ $\mathrm{E}[x^{6}]$ $\mathrm{E}[x^{7}]$ $\mathrm{E}[x^{8}]$ $\mathrm{E}[x^{9}]$ $\mathrm{E}[x^{10}]$ $\mathrm{E}[x^{11}]$ $\mathrm{E}[x^{12}]$
$a_1$ $1$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$

Event Probabilities

$\mathrm{P}[a_1=1]=\frac{1}{679477248}$
$\mathrm{P}[a_1=-1]=\frac{1}{679477248}$