Properties

Label 0.1.44499326400
  
Name \(\mu(44499326400)\)
Weight 0
Degree 1
Real dimension 0
Components 44499326400
Contained in \(\mathrm{U}(1)\)
Identity Component \(\mathrm{SO}(1)\)
Component group \(C_{44499326400}\)

Learn more about

Invariants

Weight:$0$
Degree:$1$
$\mathbb{R}$-dimension:$0$
Components:$44499326400$
Contained in:$\mathrm{U}(1)$
Rational:$\mathrm{False}$

Identity Component

Name:$\mathrm{SO}(1)$
Index:$44499326400$
$\mathbb{R}$-dimension:$0$
Description:$\mathrm{trivial}$

Component Group

Name:$C_{44499326400}$
Order:$44499326400$
Abelian:$\mathrm{True}$
Generators:$\left[\zeta_{44499326400}\right]$

Subgroups and Supergroups

Maximal Subgroups:$\mu(22249663200)$, $\mu(14833108800)$, $\mu(8899865280)$, $\mu(283435200)$
Minimal Supergroups:$\mu(88998652800)$, $\mu(133497979200)$, $\mu(222496632000)$, $\ldots$

Moment Statistics

$x$ $\mathrm{E}[x^{0}]$ $\mathrm{E}[x^{1}]$ $\mathrm{E}[x^{2}]$ $\mathrm{E}[x^{3}]$ $\mathrm{E}[x^{4}]$ $\mathrm{E}[x^{5}]$ $\mathrm{E}[x^{6}]$ $\mathrm{E}[x^{7}]$ $\mathrm{E}[x^{8}]$ $\mathrm{E}[x^{9}]$ $\mathrm{E}[x^{10}]$ $\mathrm{E}[x^{11}]$ $\mathrm{E}[x^{12}]$
$a_1$ $1$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$

Event Probabilities

$\mathrm{P}[a_1=1]=\frac{1}{44499326400}$
$\mathrm{P}[a_1=-1]=\frac{1}{44499326400}$