Properties

Label 0.1.36044454384
  
Name \(\mu(36044454384)\)
Weight 0
Degree 1
Real dimension 0
Components 36044454384
Contained in \(\mathrm{U}(1)\)
Identity Component \(\mathrm{SO}(1)\)
Component group \(C_{36044454384}\)

Learn more about

Invariants

Weight:$0$
Degree:$1$
$\mathbb{R}$-dimension:$0$
Components:$36044454384$
Contained in:$\mathrm{U}(1)$
Rational:$\mathrm{False}$

Identity Component

Name:$\mathrm{SO}(1)$
Index:$36044454384$
$\mathbb{R}$-dimension:$0$
Description:$\mathrm{trivial}$

Component Group

Name:$C_{36044454384}$
Order:$36044454384$
Abelian:$\mathrm{True}$
Generators:$\left[\zeta_{36044454384}\right]$

Subgroups and Supergroups

Maximal Subgroups:$\mu(18022227192)$, $\mu(12014818128)$, $\mu(229582512)$
Minimal Supergroups:$\mu(72088908768)$, $\mu(108133363152)$, $\mu(180222271920)$, $\ldots$

Moment Statistics

$x$ $\mathrm{E}[x^{0}]$ $\mathrm{E}[x^{1}]$ $\mathrm{E}[x^{2}]$ $\mathrm{E}[x^{3}]$ $\mathrm{E}[x^{4}]$ $\mathrm{E}[x^{5}]$ $\mathrm{E}[x^{6}]$ $\mathrm{E}[x^{7}]$ $\mathrm{E}[x^{8}]$ $\mathrm{E}[x^{9}]$ $\mathrm{E}[x^{10}]$ $\mathrm{E}[x^{11}]$ $\mathrm{E}[x^{12}]$
$a_1$ $1$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$

Event Probabilities

$\mathrm{P}[a_1=1]=\frac{1}{36044454384}$
$\mathrm{P}[a_1=-1]=\frac{1}{36044454384}$