Properties

Label 0.1.276
  
Name \(\mu(276)\)
Weight 0
Degree 1
Real dimension 0
Components 276
Contained in \(\mathrm{U}(1)\)
Identity Component \(\mathrm{SO}(1)\)
Component group \(C_{276}\)

Learn more about

Invariants

Weight:$0$
Degree:$1$
$\mathbb{R}$-dimension:$0$
Components:$276$
Contained in:$\mathrm{U}(1)$
Rational:$\mathrm{False}$

Identity Component

Name:$\mathrm{SO}(1)$
Index:$276$
$\mathbb{R}$-dimension:$0$
Description:$\mathrm{trivial}$

Component Group

Name:$C_{276}$
Order:$276$
Abelian:$\mathrm{True}$
Generators:$\left[\zeta_{276}\right]$

Subgroups and Supergroups

Maximal Subgroups:$\mu(138)$, $\mu(92)$, $\mu(12)$
Minimal Supergroups:$\mu(552)$, $\mu(828)$, $\mu(1380)$, $\ldots$

Moment Statistics

$x$ $\mathrm{E}[x^{0}]$ $\mathrm{E}[x^{1}]$ $\mathrm{E}[x^{2}]$ $\mathrm{E}[x^{3}]$ $\mathrm{E}[x^{4}]$ $\mathrm{E}[x^{5}]$ $\mathrm{E}[x^{6}]$ $\mathrm{E}[x^{7}]$ $\mathrm{E}[x^{8}]$ $\mathrm{E}[x^{9}]$ $\mathrm{E}[x^{10}]$ $\mathrm{E}[x^{11}]$ $\mathrm{E}[x^{12}]$
$a_1$ $1$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$

Event Probabilities

$\mathrm{P}[a_1=1]=\frac{1}{276}$
$\mathrm{P}[a_1=-1]=\frac{1}{276}$