Properties

Label 0.1.264
  
Name \(\mu(264)\)
Weight $0$
Degree $1$
Real dimension $0$
Components $264$
Contained in \(\mathrm{U}(1)\)
Identity component \(\mathrm{SO}(1)\)
Component group \(C_{264}\)

Learn more about

Invariants

Weight:$0$
Degree:$1$
$\mathbb{R}$-dimension:$0$
Components:$264$
Contained in:$\mathrm{U}(1)$
Rational:no

Identity component

Name:$\mathrm{SO}(1)$
Index:$264$
$\mathbb{R}$-dimension:$0$
Description:$\textsf{trivial}$

Component group

Name:$C_{264}$
Order:$264$
Abelian:yes
Generators:$\left[\zeta_{264}\right]$

Subgroups and supergroups

Maximal subgroups:$\mu(132)$, $\mu(88)$, $\mu(24)$
Minimal supergroups:$\mu(528)$, $\mu(792)$, $\mu(1320)$, $\ldots$

Moment sequences

$x$ $\mathrm{E}[x^{0}]$ $\mathrm{E}[x^{1}]$ $\mathrm{E}[x^{2}]$ $\mathrm{E}[x^{3}]$ $\mathrm{E}[x^{4}]$ $\mathrm{E}[x^{5}]$ $\mathrm{E}[x^{6}]$ $\mathrm{E}[x^{7}]$ $\mathrm{E}[x^{8}]$ $\mathrm{E}[x^{9}]$ $\mathrm{E}[x^{10}]$ $\mathrm{E}[x^{11}]$ $\mathrm{E}[x^{12}]$
$a_1$ $1$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$

Event probabilities

$\mathrm{Pr}[a_1=1]=\frac{1}{264}$ $\mathrm{Pr}[a_1=-1]=\frac{1}{264}$