Properties

Label 0.1.2503087110
  
Name \(\mu(2503087110)\)
Weight 0
Degree 1
Real dimension 0
Components 2503087110
Contained in \(\mathrm{U}(1)\)
Identity Component \(\mathrm{SO}(1)\)
Component group \(C_{2503087110}\)

Learn more about

Invariants

Weight:$0$
Degree:$1$
$\mathbb{R}$-dimension:$0$
Components:$2503087110$
Contained in:$\mathrm{U}(1)$
Rational:$\mathrm{False}$

Identity Component

Name:$\mathrm{SO}(1)$
Index:$2503087110$
$\mathbb{R}$-dimension:$0$
Description:$\mathrm{trivial}$

Component Group

Name:$C_{2503087110}$
Order:$2503087110$
Abelian:$\mathrm{True}$
Generators:$\left[\zeta_{2503087110}\right]$

Subgroups and Supergroups

Maximal Subgroups:$\mu(1251543555)$, $\mu(834362370)$, $\mu(500617422)$, $\mu(15943230)$
Minimal Supergroups:$\mu(5006174220)$, $\mu(7509261330)$, $\mu(12515435550)$, $\ldots$

Moment Statistics

$x$ $\mathrm{E}[x^{0}]$ $\mathrm{E}[x^{1}]$ $\mathrm{E}[x^{2}]$ $\mathrm{E}[x^{3}]$ $\mathrm{E}[x^{4}]$ $\mathrm{E}[x^{5}]$ $\mathrm{E}[x^{6}]$ $\mathrm{E}[x^{7}]$ $\mathrm{E}[x^{8}]$ $\mathrm{E}[x^{9}]$ $\mathrm{E}[x^{10}]$ $\mathrm{E}[x^{11}]$ $\mathrm{E}[x^{12}]$
$a_1$ $1$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$

Event Probabilities

$\mathrm{P}[a_1=1]=\frac{1}{2503087110}$
$\mathrm{P}[a_1=-1]=\frac{1}{2503087110}$