Properties

Label 0.1.229980468750
  
Name \(\mu(229980468750)\)
Weight 0
Degree 1
Real dimension 0
Components 229980468750
Contained in \(\mathrm{U}(1)\)
Identity Component \(\mathrm{SO}(1)\)
Component group \(C_{229980468750}\)

Learn more about

Invariants

Weight:$0$
Degree:$1$
$\mathbb{R}$-dimension:$0$
Components:$229980468750$
Contained in:$\mathrm{U}(1)$
Rational:$\mathrm{False}$

Identity Component

Name:$\mathrm{SO}(1)$
Index:$229980468750$
$\mathbb{R}$-dimension:$0$
Description:$\mathrm{trivial}$

Component Group

Name:$C_{229980468750}$
Order:$229980468750$
Abelian:$\mathrm{True}$
Generators:$\left[\zeta_{229980468750}\right]$

Subgroups and Supergroups

Maximal Subgroups:$\mu(114990234375)$, $\mu(76660156250)$, $\mu(45996093750)$, $\mu(1464843750)$
Minimal Supergroups:$\mu(459960937500)$, $\mu(689941406250)$, $\mu(1149902343750)$, $\ldots$

Moment Statistics

$x$ $\mathrm{E}[x^{0}]$ $\mathrm{E}[x^{1}]$ $\mathrm{E}[x^{2}]$ $\mathrm{E}[x^{3}]$ $\mathrm{E}[x^{4}]$ $\mathrm{E}[x^{5}]$ $\mathrm{E}[x^{6}]$ $\mathrm{E}[x^{7}]$ $\mathrm{E}[x^{8}]$ $\mathrm{E}[x^{9}]$ $\mathrm{E}[x^{10}]$ $\mathrm{E}[x^{11}]$ $\mathrm{E}[x^{12}]$
$a_1$ $1$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$

Event Probabilities

$\mathrm{P}[a_1=1]=\frac{1}{229980468750}$
$\mathrm{P}[a_1=-1]=\frac{1}{229980468750}$