Properties

Label 0.1.212
  
Name \(\mu(212)\)
Weight $0$
Degree $1$
Real dimension $0$
Components $212$
Contained in \(\mathrm{O}(1)\)
Identity component \(\mathrm{SO}(1)\)
Component group \(C_{212}\)

Learn more

Invariants

Weight:$0$
Degree:$1$
$\mathbb{R}$-dimension:$0$
Components:$212$
Contained in:$\mathrm{O}(1)$
Rational:yes

Identity component

Name:$\mathrm{SO}(1)$
$\mathbb{R}$-dimension:$0$
Description:$\textsf{trivial}$

Component group

Name:$C_{212}$
Order:$212$
Abelian:yes
Generators:$\begin{bmatrix}\zeta_{212}\end{bmatrix}$

Subgroups and supergroups

Maximal subgroups:$\mu(106)$, $\mu(4)$
Minimal supergroups:$\mu(424)$, $\mu(636)$, $\mu(1060)$, $\cdots$

Moment sequences

$x$ $\mathrm{E}[x^{0}]$ $\mathrm{E}[x^{1}]$ $\mathrm{E}[x^{2}]$ $\mathrm{E}[x^{3}]$ $\mathrm{E}[x^{4}]$ $\mathrm{E}[x^{5}]$ $\mathrm{E}[x^{6}]$ $\mathrm{E}[x^{7}]$ $\mathrm{E}[x^{8}]$ $\mathrm{E}[x^{9}]$ $\mathrm{E}[x^{10}]$ $\mathrm{E}[x^{11}]$ $\mathrm{E}[x^{12}]$
$a_1$ $1$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$

Event probabilities

$\mathrm{Pr}[a_1=1]=1/212$