Properties

Label 0.1.140639846400
  
Name \(\mu(140639846400)\)
Weight 0
Degree 1
Real dimension 0
Components 140639846400
Contained in \(\mathrm{U}(1)\)
Identity Component \(\mathrm{SO}(1)\)
Component group \(C_{140639846400}\)

Learn more about

Invariants

Weight:$0$
Degree:$1$
$\mathbb{R}$-dimension:$0$
Components:$140639846400$
Contained in:$\mathrm{U}(1)$
Rational:$\mathrm{False}$

Identity Component

Name:$\mathrm{SO}(1)$
Index:$140639846400$
$\mathbb{R}$-dimension:$0$
Description:$\mathrm{trivial}$

Component Group

Name:$C_{140639846400}$
Order:$140639846400$
Abelian:$\mathrm{True}$
Generators:$\left[\zeta_{140639846400}\right]$

Subgroups and Supergroups

Maximal Subgroups:$\mu(70319923200)$, $\mu(46879948800)$, $\mu(28127969280)$, $\mu(895795200)$
Minimal Supergroups:$\mu(281279692800)$, $\mu(421919539200)$, $\mu(703199232000)$, $\ldots$

Moment Statistics

$x$ $\mathrm{E}[x^{0}]$ $\mathrm{E}[x^{1}]$ $\mathrm{E}[x^{2}]$ $\mathrm{E}[x^{3}]$ $\mathrm{E}[x^{4}]$ $\mathrm{E}[x^{5}]$ $\mathrm{E}[x^{6}]$ $\mathrm{E}[x^{7}]$ $\mathrm{E}[x^{8}]$ $\mathrm{E}[x^{9}]$ $\mathrm{E}[x^{10}]$ $\mathrm{E}[x^{11}]$ $\mathrm{E}[x^{12}]$
$a_1$ $1$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$

Event Probabilities

$\mathrm{P}[a_1=1]=\frac{1}{140639846400}$
$\mathrm{P}[a_1=-1]=\frac{1}{140639846400}$