-
nf_fields • Show schema
Hide schema
{'class_group': [3], 'class_number': 3, 'cm': False, 'coeffs': [-468, 234, 351, -26, -39, 0, 1], 'conductor': 117, 'degree': 6, 'dirichlet_group': [64, 1, 4, 22, 16, 88], 'disc_abs': 2436053373, 'disc_rad': 39, 'disc_sign': 1, 'frobs': [[2, [[2, 3]]], [3, [0]], [5, [[6, 1]]], [7, [[6, 1]]], [11, [[2, 3]]], [13, [0]], [17, [[3, 2]]], [19, [[6, 1]]], [23, [[3, 2]]], [29, [[1, 6]]], [31, [[6, 1]]], [37, [[6, 1]]], [41, [[6, 1]]], [43, [[3, 2]]], [47, [[6, 1]]], [53, [[1, 6]]], [59, [[2, 3]]]], 'gal_is_abelian': True, 'gal_is_cyclic': True, 'gal_is_solvable': True, 'galois_disc_exponents': [8, 5], 'galois_label': '6T1', 'galt': 1, 'grd': 36.68156023118341, 'index': 4, 'inessentialp': [2], 'is_galois': True, 'is_minimal_sibling': True, 'iso_number': 1, 'label': '6.6.2436053373.1', 'local_algs': ['3.3.4.3', '3.3.4.3', '13.6.5.3'], 'monogenic': -1, 'num_ram': 2, 'r2': 0, 'ramps': [3, 13], 'rd': 36.6815602312, 'regulator': {'__RealLiteral__': 0, 'data': '517.433384903', 'prec': 44}, 'res': {'sex': ['-26,-39,0,1', '-3,-1,1', '0,1']}, 'subfield_mults': [1, 1], 'subfields': ['-3.-1.1', '-26.-39.0.1'], 'torsion_gen': '\\( -1 \\)', 'torsion_order': 2, 'units': ['\\( \\frac{9}{638} a^{5} - \\frac{21}{319} a^{4} - \\frac{155}{638} a^{3} + \\frac{351}{319} a^{2} - \\frac{117}{638} a - \\frac{1226}{319} \\)', '\\( \\frac{161}{1914} a^{5} - \\frac{215}{638} a^{4} - \\frac{598}{319} a^{3} + \\frac{10325}{1914} a^{2} + \\frac{4619}{638} a - \\frac{3010}{319} \\)', '\\( \\frac{1}{957} a^{5} - \\frac{37}{319} a^{4} + \\frac{213}{638} a^{3} + \\frac{5579}{1914} a^{2} - \\frac{3305}{638} a - \\frac{3907}{319} \\)', '\\( \\frac{89}{957} a^{5} - \\frac{103}{319} a^{4} - \\frac{1459}{638} a^{3} + \\frac{10375}{1914} a^{2} + \\frac{5077}{638} a - \\frac{3203}{319} \\)', '\\( \\frac{24}{319} a^{5} - \\frac{112}{319} a^{4} - \\frac{933}{638} a^{3} + \\frac{3425}{638} a^{2} + \\frac{2247}{638} a - \\frac{2179}{319} \\)'], 'used_grh': False, 'zk': ['1', 'a', 'a^2', '1/2*a^3 - 1/2*a^2 - 1/2*a', '1/2*a^4 - 1/2*a', '1/1914*a^5 - 37/638*a^4 - 53/638*a^3 - 280/957*a^2 + 51/319*a + 120/319']}