| 9.9.5609891727441.1 |
x9 - 3x8 - 15x7 + 51x6 + 39x5 - 219x4 + 81x3 + 204x2 - 132x - 8 |
\( 3^{16}\cdot 19^{4} \) |
$C_3^2:C_3$ (as 9T7) |
Trivial
|
| 9.9.15091989595281.1 |
x9 - 3x8 - 18x7 + 40x6 + 123x5 - 141x4 - 373x3 + 57x2 + 339x + 127 |
\( 3^{12}\cdot 73^{4} \) |
$C_3^2:C_3$ (as 9T7) |
Trivial
|
| 9.9.25002110044521.2 |
x9 - 24x7 - 23x6 + 135x5 + 159x4 - 209x3 - 180x2 + 141x + 11 |
\( 3^{12}\cdot 19^{6} \) |
$C_3^2:C_3$ (as 9T7) |
Trivial
|
| 9.9.80676485676081.1 |
x9 - 3x8 - 21x7 + 63x6 + 141x5 - 435x4 - 273x3 + 996x2 - 192x - 64 |
\( 3^{16}\cdot 37^{4} \) |
$C_3^2:C_3$ (as 9T7) |
Trivial
|
| 9.9.126270685902529.1 |
x9 - x8 - 34x7 - 3x6 + 350x5 + 330x4 - 729x3 - 718x2 + 356x + 344 |
\( 7^{6}\cdot 181^{4} \) |
$C_3^2:C_3$ (as 9T7) |
Trivial
|
| 9.9.290942852360209.1 |
x9 - 2x8 - 43x7 + 46x6 + 626x5 - 148x4 - 3168x3 - 779x2 + 3052x - 97 |
\( 7^{6}\cdot 223^{4} \) |
$C_3^2:C_3$ (as 9T7) |
Trivial
|
| 9.9.543261605368729.1 |
x9 - 2x8 - 26x7 + 54x6 + 211x5 - 456x4 - 585x3 + 1360x2 + 308x - 1000 |
\( 13^{6}\cdot 103^{4} \) |
$C_3^2:C_3$ (as 9T7) |
Trivial
|
| 9.9.992903858682129.1 |
x9 - 28x7 - 9x6 + 237x5 + 95x4 - 613x3 - 54x2 + 405x - 27 |
\( 3^{8}\cdot 73^{6} \) |
$C_3^2:C_3$ (as 9T7) |
Trivial
|
| 9.9.1363532208525369.1 |
x9 - 39x7 - 50x6 + 396x5 + 930x4 - 636x3 - 3825x2 - 4050x - 1375 |
\( 3^{12}\cdot 37^{6} \) |
$C_3^2:C_3$ (as 9T7) |
Trivial
|
| 9.9.1517427126663889.1 |
x9 - 3x8 - 53x7 + 207x6 + 613x5 - 3243x4 - 22x3 + 13140x2 - 13923x + 2619 |
\( 7^{6}\cdot 337^{4} \) |
$C_3^2:C_3$ (as 9T7) |
Trivial
|
| 9.9.1785733746591249.1 |
x9 - 57x7 - 94x6 + 936x5 + 2886x4 - 2418x3 - 19773x2 - 27378x - 11999 |
\( 3^{12}\cdot 7^{6}\cdot 13^{4} \) |
$C_3^2:C_3$ (as 9T7) |
Trivial
|
| 9.9.1785733746591249.2 |
x9 - 57x7 - 20x6 + 936x5 + 858x4 - 4446x3 - 7605x2 - 3042x - 169 |
\( 3^{12}\cdot 7^{6}\cdot 13^{4} \) |
$C_3^2:C_3$ (as 9T7) |
Trivial
|
| 9.9.1785733746591249.3 |
x9 - 57x7 - 74x6 + 936x5 + 2028x4 - 3783x3 - 12168x2 - 6084x + 1352 |
\( 3^{12}\cdot 7^{6}\cdot 13^{4} \) |
$C_3^2:C_3$ (as 9T7) |
Trivial
|
| 9.9.2025170913606201.1 |
x9 - 3x8 - 33x7 + 96x6 + 327x5 - 912x4 - 1116x3 + 2904x2 + 768x - 1664 |
\( 3^{16}\cdot 19^{6} \) |
$C_3^2:C_3$ (as 9T7) |
$[3]$
|
| 9.9.2025170913606201.2 |
x9 - 3x8 - 33x7 + 114x6 + 291x5 - 1326x4 + 9x3 + 4290x2 - 4812x + 1405 |
\( 3^{16}\cdot 19^{6} \) |
$C_3^2:C_3$ (as 9T7) |
$[3]$
|
| 9.9.2866369804403121.1 |
x9 - 3x8 - 45x7 + 137x6 + 651x5 - 1953x4 - 3861x3 + 11268x2 + 8160x - 22976 |
\( 3^{12}\cdot 271^{4} \) |
$C_3^2:C_3$ (as 9T7) |
Trivial
|
| 9.9.3695869460957569.1 |
x9 - 2x8 - 64x7 + 199x6 + 961x5 - 3839x4 - 2045x3 + 18840x2 - 16975x + 727 |
\( 7^{6}\cdot 421^{4} \) |
$C_3^2:C_3$ (as 9T7) |
Trivial
(GRH)
|
| 9.9.4720723441965441.1 |
x9 - 3x8 - 54x7 + 55x6 + 903x5 + 243x4 - 4817x3 - 4902x2 + 2454x + 1853 |
\( 3^{12}\cdot 307^{4} \) |
$C_3^2:C_3$ (as 9T7) |
Trivial
|
| 9.9.5406450165073489.1 |
x9 - x8 - 62x7 - 11x6 + 1277x5 + 1255x4 - 9101x3 - 11442x2 + 20534x + 26417 |
\( 7^{6}\cdot 463^{4} \) |
$C_3^2:C_3$ (as 9T7) |
Trivial
(GRH)
|
| 9.9.6076395973440081.1 |
x9 - 3x8 - 54x7 + 51x6 + 927x5 + 315x4 - 5373x3 - 6390x2 + 3258x + 4857 |
\( 3^{16}\cdot 109^{4} \) |
$C_3^2:C_3$ (as 9T7) |
Trivial
(GRH)
|
| 9.9.11198373780772161.1 |
x9 - 3x8 - 54x7 + 69x6 + 1035x5 + 279x4 - 6561x3 - 8064x2 + 3042x + 4479 |
\( 3^{16}\cdot 127^{4} \) |
$C_3^2:C_3$ (as 9T7) |
Trivial
(GRH)
|
| 9.9.11487763116846289.2 |
x9 - 71x7 - 104x6 + 1608x5 + 4316x4 - 9654x3 - 44887x2 - 41948x - 757 |
\( 7^{6}\cdot 13^{4}\cdot 43^{4} \) |
$C_3^2:C_3$ (as 9T7) |
$[3]$
(GRH)
|
| 9.9.11487763116846289.3 |
x9 - 3x8 - 75x7 + 59x6 + 1925x5 + 2217x4 - 12881x3 - 31750x2 - 17852x + 2792 |
\( 7^{6}\cdot 13^{4}\cdot 43^{4} \) |
$C_3^2:C_3$ (as 9T7) |
$[3]$
(GRH)
|
| 9.9.11487763116846289.4 |
x9 - x8 - 84x7 + 25x6 + 1968x5 - 276x4 - 16400x3 - 1664x2 + 41472x + 27712 |
\( 7^{6}\cdot 13^{4}\cdot 43^{4} \) |
$C_3^2:C_3$ (as 9T7) |
$[3]$
(GRH)
|
| 9.9.13274007026617129.1 |
x9 - 43x7 - 2x6 + 638x5 + 14x4 - 3889x3 + 8x2 + 8064x + 512 |
\( 13^{6}\cdot 229^{4} \) |
$C_3^2:C_3$ (as 9T7) |
Trivial
(GRH)
|
| 9.9.24135066344494609.2 |
x9 - x8 - 79x7 + 169x6 + 1967x5 - 6811x4 - 10892x3 + 78008x2 - 118237x + 56987 |
\( 7^{6}\cdot 673^{4} \) |
$C_3^2:C_3$ (as 9T7) |
$[3]$
(GRH)
|
| 9.9.24458476118259481.1 |
x9 - 3x8 - 57x7 + 125x6 + 995x5 - 1567x4 - 5164x3 + 6948x2 + 1261x - 467 |
\( 19^{6}\cdot 151^{4} \) |
$C_3^2:C_3$ (as 9T7) |
Trivial
|
| 9.9.30387186626385681.1 |
x9 - 3x8 - 60x7 + 141x6 + 1173x5 - 2055x4 - 7317x3 + 10500x2 + 3774x - 4913 |
\( 3^{16}\cdot 163^{4} \) |
$C_3^2:C_3$ (as 9T7) |
Trivial
(GRH)
|
| 9.9.34103327641164769.1 |
x9 - x8 - 57x7 + 75x6 + 827x5 - 1099x4 - 3585x3 + 4222x2 + 2676x - 8 |
\( 13^{4}\cdot 103^{6} \) |
$C_3^2:C_3$ (as 9T7) |
Trivial
|
| 9.9.39761413237774881.1 |
x9 - 75x7 - 68x6 + 1530x5 + 2184x4 - 7399x3 - 16302x2 - 5568x + 3448 |
\( 3^{12}\cdot 523^{4} \) |
$C_3^2:C_3$ (as 9T7) |
Trivial
(GRH)
|
| 9.9.41142776764733329.2 |
x9 - 2x8 - 87x7 + 272x6 + 2256x5 - 10378x4 - 9344x3 + 115983x2 - 211778x + 121709 |
\( 7^{6}\cdot 769^{4} \) |
$C_3^2:C_3$ (as 9T7) |
$[3]$
(GRH)
|
| 9.9.46201319063696241.2 |
x9 - 3x8 - 81x7 + 339x6 + 1665x5 - 9855x4 + 54x3 + 70524x2 - 125631x + 64419 |
\( 3^{16}\cdot 181^{4} \) |
$C_3^2:C_3$ (as 9T7) |
Trivial
(GRH)
|
| 9.9.50894594316479809.1 |
x9 - 4x8 - 84x7 + 186x6 + 2601x5 - 692x4 - 29609x3 - 41306x2 + 5524x + 11752 |
\( 7^{6}\cdot 811^{4} \) |
$C_3^2:C_3$ (as 9T7) |
Trivial
(GRH)
|
| 9.9.58905834008868081.1 |
x9 - 75x7 - 50x6 + 1890x5 + 2256x4 - 16912x3 - 23745x2 + 28992x + 9811 |
\( 3^{12}\cdot 577^{4} \) |
$C_3^2:C_3$ (as 9T7) |
Trivial
(GRH)
|
| 9.9.62285128497192769.1 |
x9 - 2x8 - 98x7 + 235x6 + 2907x5 - 8083x4 - 23323x3 + 72818x2 - 3197x - 65647 |
\( 7^{6}\cdot 853^{4} \) |
$C_3^2:C_3$ (as 9T7) |
Trivial
(GRH)
|
| 9.9.67507555346709921.1 |
x9 - 3x8 - 87x7 + 303x6 + 1533x5 - 3819x4 - 10269x3 + 5982x2 + 21720x + 10216 |
\( 3^{16}\cdot 199^{4} \) |
$C_3^2:C_3$ (as 9T7) |
Trivial
(GRH)
|
| 9.9.71520584390288929.1 |
x9 - x8 - 105x7 - 53x6 + 3287x5 + 5559x4 - 26661x3 - 72326x2 - 48824x - 7288 |
\( 7^{6}\cdot 883^{4} \) |
$C_3^2:C_3$ (as 9T7) |
Trivial
(GRH)
|
| 9.9.75040713495231201.1 |
x9 - 78x7 - 52x6 + 1845x5 + 1632x4 - 14625x3 - 13056x2 + 16908x - 1592 |
\( 3^{12}\cdot 613^{4} \) |
$C_3^2:C_3$ (as 9T7) |
Trivial
(GRH)
|
| 9.9.80425212553252449.1 |
x9 - 3x8 - 54x7 + 137x6 + 759x5 - 1971x4 - 2178x3 + 5625x2 + 1608x - 3284 |
\( 3^{12}\cdot 73^{6} \) |
$C_3^2:C_3$ (as 9T7) |
$[3]$
|
| 9.9.80425212553252449.2 |
x9 - 3x8 - 54x7 + 95x6 + 843x5 - 417x4 - 3347x3 + 1278x2 + 3204x - 1457 |
\( 3^{12}\cdot 73^{6} \) |
$C_3^2:C_3$ (as 9T7) |
$[3]$
|
| 9.9.84423549813321481.1 |
x9 - 2x8 - 45x7 - 11x6 + 595x5 + 1092x4 - 776x3 - 3297x2 - 2653x - 665 |
\( 7^{4}\cdot 181^{6} \) |
$C_3^2:C_3$ (as 9T7) |
Trivial
(GRH)
|
| 9.9.104318309619869401.2 |
x9 - x8 - 81x7 - 11x6 + 1893x5 + 1771x4 - 9137x3 - 1218x2 + 13552x - 6776 |
\( 7^{4}\cdot 19^{6}\cdot 31^{4} \) |
$C_3^2:C_3$ (as 9T7) |
$[3]$
|
| 9.9.104318309619869401.3 |
x9 - 61x7 - 60x6 + 740x5 + 578x4 - 670x3 - 341x2 + 110x - 1 |
\( 7^{4}\cdot 19^{6}\cdot 31^{4} \) |
$C_3^2:C_3$ (as 9T7) |
$[3]$
|
| 9.9.104318309619869401.4 |
x9 - x8 - 81x7 + 8x6 + 1950x5 + 99x4 - 17877x3 - 2529x2 + 55200x + 16157 |
\( 7^{4}\cdot 19^{6}\cdot 31^{4} \) |
$C_3^2:C_3$ (as 9T7) |
$[3]$
|
| 9.9.110446108890554889.1 |
x9 - 3x8 - 57x7 + 162x6 + 906x5 - 2433x4 - 2901x3 + 5496x2 + 1203x - 1990 |
\( 3^{16}\cdot 37^{6} \) |
$C_3^2:C_3$ (as 9T7) |
$[3]$
|
| 9.9.110446108890554889.2 |
x9 - 3x8 - 57x7 + 126x6 + 978x5 - 1029x4 - 6717x3 + 465x2 + 15756x + 9989 |
\( 3^{16}\cdot 37^{6} \) |
$C_3^2:C_3$ (as 9T7) |
$[3]$
|
| 9.9.127847196324051169.1 |
x9 - 4x8 - 102x7 + 445x6 + 2869x5 - 15551x4 - 10175x3 + 157160x2 - 271691x + 139399 |
\( 7^{6}\cdot 1021^{4} \) |
$C_3^2:C_3$ (as 9T7) |
Trivial
(GRH)
|
| 9.9.129800497404846321.2 |
x9 - 81x7 - 94x6 + 2148x5 + 5274x4 - 15806x3 - 71859x2 - 85950x - 31641 |
\( 3^{12}\cdot 19^{4}\cdot 37^{4} \) |
$C_3^2:C_3$ (as 9T7) |
$[3]$
(GRH)
|
| 9.9.129800497404846321.3 |
x9 - 3x8 - 87x7 + 257x6 + 2037x5 - 6885x4 - 10825x3 + 57330x2 - 60840x + 17576 |
\( 3^{12}\cdot 19^{4}\cdot 37^{4} \) |
$C_3^2:C_3$ (as 9T7) |
$[3]$
(GRH)
|
| 9.9.129800497404846321.4 |
x9 - 3x8 - 90x7 + 22x6 + 2709x5 + 4893x4 - 18513x3 - 47211x2 + 26685x + 93419 |
\( 3^{12}\cdot 19^{4}\cdot 37^{4} \) |
$C_3^2:C_3$ (as 9T7) |
$[3]$
(GRH)
|