| 8.0.12008989.1 |
x8 - x7 + 4x5 - 2x4 + 3x2 - x + 1 |
\( 229^{3} \) |
$Q_8:S_4$ (as 8T40) |
Trivial
|
| 8.2.22665187.1 |
x8 - x7 - 4x5 + 2x4 + 3x2 - x - 1 |
\( -\,283^{3} \) |
$Q_8:S_4$ (as 8T40) |
Trivial
|
| 8.2.36264691.1 |
x8 - 3x7 + 7x6 - 7x5 + 4x4 + 2x3 - x2 - x - 1 |
\( -\,331^{3} \) |
$Q_8:S_4$ (as 8T40) |
Trivial
|
| 8.2.49836032.1 |
x8 - 2x7 + 2x6 - 4x5 + 5x4 - 4x3 + 2x2 - 2x + 1 |
\( -\,2^{12}\cdot 23^{3} \) |
$Q_8:S_4$ (as 8T40) |
Trivial
|
| 8.0.51868672.1 |
x8 - 2x7 + 4x5 - 4x3 + 2x + 1 |
\( 2^{10}\cdot 37^{3} \) |
$Q_8:S_4$ (as 8T40) |
Trivial
|
| 8.2.81415168.1 |
x8 - 4x7 + 8x6 - 8x5 + 2x4 + 6x3 - 12x2 + 6x - 1 |
\( -\,2^{10}\cdot 43^{3} \) |
$Q_8:S_4$ (as 8T40) |
Trivial
|
| 8.2.118370771.1 |
x8 - 3x7 + x6 + 3x5 - 4x4 + 10x3 - 7x2 + 5x - 3 |
\( -\,491^{3} \) |
$Q_8:S_4$ (as 8T40) |
Trivial
|
| 8.2.122023936.1 |
x8 - 2x7 + 2x6 - 4x5 + x4 + 6x2 + 6x + 1 |
\( -\,2^{12}\cdot 31^{3} \) |
$Q_8:S_4$ (as 8T40) |
Trivial
|
| 8.2.150730227.1 |
x8 - x7 - x6 + 4x5 - 4x4 + 2x3 - 8x2 + 5x - 1 |
\( -\,3^{7}\cdot 41^{3} \) |
$Q_8:S_4$ (as 8T40) |
Trivial
|
| 8.2.150730227.2 |
x8 - 2x7 - 2x6 + 3x5 + 6x4 - 3x3 - 10x2 - x - 1 |
\( -\,3^{7}\cdot 41^{3} \) |
$Q_8:S_4$ (as 8T40) |
Trivial
|
| 8.0.160016229.1 |
x8 - 2x7 + 3x6 - 2x5 + x4 + 3x3 - x2 - x + 3 |
\( 3^{8}\cdot 29^{3} \) |
$Q_8:S_4$ (as 8T40) |
Trivial
|
| 8.0.167042000.1 |
x8 - 4x7 + 9x6 - 13x5 + 18x4 - 19x3 + 14x2 - 6x + 2 |
\( 2^{4}\cdot 5^{3}\cdot 17^{4} \) |
$Q_8:S_4$ (as 8T40) |
Trivial
|
| 8.2.199344128.1 |
x8 - 2x7 + 2x6 + 2x5 - 4x4 + 6x3 + 6x2 - 2x - 3 |
\( -\,2^{14}\cdot 23^{3} \) |
$Q_8:S_4$ (as 8T40) |
Trivial
|
| 8.0.207474688.1 |
x8 - 2x7 + 2x6 - 8x5 + 12x4 - 10x3 + 12x2 - 4x + 3 |
\( 2^{12}\cdot 37^{3} \) |
$Q_8:S_4$ (as 8T40) |
Trivial
|
| 8.2.286557184.1 |
x8 + 4x6 - 7x4 + 2x2 - 4 |
\( -\,2^{10}\cdot 23^{4} \) |
$Q_8:S_4$ (as 8T40) |
Trivial
|
| 8.2.286557184.2 |
x8 - 2x7 - 2x5 + 11x4 - 14x3 + 10x2 - 4x - 1 |
\( -\,2^{10}\cdot 23^{4} \) |
$Q_8:S_4$ (as 8T40) |
Trivial
|
| 8.0.311441744.1 |
x8 + 5x6 - 3x5 - 2x4 + 5x3 - 4x2 - 2x + 2 |
\( 2^{4}\cdot 269^{3} \) |
$Q_8:S_4$ (as 8T40) |
Trivial
|
| 8.2.325660672.1 |
x8 - 2x7 + 8x6 - 10x5 + 6x4 + 2x2 - 4x - 2 |
\( -\,2^{12}\cdot 43^{3} \) |
$Q_8:S_4$ (as 8T40) |
Trivial
|
| 8.0.338608873.1 |
x8 - 3x7 + 4x5 + 6x4 - 12x3 + 2x2 - 4x + 7 |
\( 17^{3}\cdot 41^{3} \) |
$Q_8:S_4$ (as 8T40) |
Trivial
|
| 8.0.338608873.2 |
x8 - 4x7 + 4x6 + 2x5 - 6x4 + 4x3 - x + 3 |
\( 17^{3}\cdot 41^{3} \) |
$Q_8:S_4$ (as 8T40) |
Trivial
|
| 8.0.357453677.1 |
x8 - 3x7 + 6x6 - 5x5 + 10x4 - 10x3 + 8x2 - 7x + 5 |
\( 7^{4}\cdot 53^{3} \) |
$Q_8:S_4$ (as 8T40) |
Trivial
|
| 8.2.390617891.1 |
x8 - x7 + 3x6 - 8x5 + 6x4 - 4x3 + 6x2 - x - 3 |
\( -\,17^{3}\cdot 43^{3} \) |
$Q_8:S_4$ (as 8T40) |
Trivial
|
| 8.2.488095744.2 |
x8 - 2x7 - 4x6 + 8x5 + 8x4 - 12x3 - 12x2 + 16x - 2 |
\( -\,2^{14}\cdot 31^{3} \) |
$Q_8:S_4$ (as 8T40) |
Trivial
|
| 8.0.489303872.1 |
x8 - 3x7 + x6 - x5 + 7x4 + x3 + 9x2 - 3x + 4 |
\( 2^{6}\cdot 197^{3} \) |
$Q_8:S_4$ (as 8T40) |
Trivial
|
| 8.0.609960125.1 |
x8 - 2x7 + 3x6 + 3x5 + 2x4 - 8x3 + 12x2 - 5x + 1 |
\( 5^{3}\cdot 47^{4} \) |
$Q_8:S_4$ (as 8T40) |
Trivial
|
| 8.0.680136784.1 |
x8 - 2x7 + 3x6 + 3x5 + 2x4 - x3 - 4x2 + 2 |
\( 2^{4}\cdot 349^{3} \) |
$Q_8:S_4$ (as 8T40) |
Trivial
|
| 8.0.768144384.1 |
x8 - 4x7 + 10x6 - 12x5 + 6x4 - 6x3 - 6x2 + 12x + 6 |
\( 2^{10}\cdot 3^{7}\cdot 7^{3} \) |
$Q_8:S_4$ (as 8T40) |
Trivial
|
| 8.0.768144384.2 |
x8 - 2x7 - 2x6 + 2x5 + 8x4 + 14x3 + 14x2 + 8x + 2 |
\( 2^{10}\cdot 3^{7}\cdot 7^{3} \) |
$Q_8:S_4$ (as 8T40) |
Trivial
|
| 8.2.771656704.1 |
x8 - 2x7 + 4x5 - 6x4 + 20x3 - 12x2 + 6x - 1 |
\( -\,2^{10}\cdot 7^{3}\cdot 13^{3} \) |
$Q_8:S_4$ (as 8T40) |
$[2]$
|
| 8.0.839808000.1 |
x8 - 4x7 + 10x6 - 14x5 + 14x4 - 14x3 + 14x2 - 8x + 2 |
\( 2^{10}\cdot 3^{8}\cdot 5^{3} \) |
$Q_8:S_4$ (as 8T40) |
Trivial
|
| 8.2.878080000.1 |
x8 - 2x7 + 2x6 - 3x4 + 2x2 - 2x + 1 |
\( -\,2^{12}\cdot 5^{4}\cdot 7^{3} \) |
$Q_8:S_4$ (as 8T40) |
Trivial
|
| 8.0.922529088.1 |
x8 - x7 + 8x6 - 2x5 + 8x4 + 2x3 + 8x2 - 2x + 4 |
\( 2^{6}\cdot 3^{8}\cdot 13^{3} \) |
$Q_8:S_4$ (as 8T40) |
Trivial
|
| 8.0.941821904.1 |
x8 - 2x7 + 3x6 - 5x5 + 8x4 + x3 + 6x2 - 6x + 2 |
\( 2^{4}\cdot 389^{3} \) |
$Q_8:S_4$ (as 8T40) |
Trivial
|
| 8.2.959512576.1 |
x8 + 2x6 + x4 - 8x2 - 16 |
\( -\,2^{16}\cdot 11^{4} \) |
$Q_8:S_4$ (as 8T40) |
Trivial
|
| 8.2.959512576.2 |
x8 + 12x4 - 4x2 - 1 |
\( -\,2^{16}\cdot 11^{4} \) |
$Q_8:S_4$ (as 8T40) |
Trivial
|
| 8.0.972728109.1 |
x8 - x7 + x6 - 12x5 + 11x4 - 7x3 + 27x2 - 6x + 73 |
\( 3^{4}\cdot 229^{3} \) |
$Q_8:S_4$ (as 8T40) |
$[2]$
|
| 8.0.1055028224.1 |
x8 - 4x5 - 2x4 + 14x3 + 6x2 - 4x + 2 |
\( 2^{10}\cdot 101^{3} \) |
$Q_8:S_4$ (as 8T40) |
Trivial
|
| 8.0.1086373952.1 |
x8 - 3x7 - 3x6 + 9x5 + 34x4 - 32x3 - 81x2 + 35x + 62 |
\( 2^{6}\cdot 257^{3} \) |
$Q_8:S_4$ (as 8T40) |
Trivial
|
| 8.0.1086373952.2 |
x8 - 3x7 + 13x6 - 30x5 + 77x4 - 139x3 + 188x2 - 155x + 71 |
\( 2^{6}\cdot 257^{3} \) |
$Q_8:S_4$ (as 8T40) |
Trivial
|
| 8.2.1105805439.1 |
x8 - 2x7 + 4x6 - 8x4 + 14x3 - 24x2 + 21x - 8 |
\( -\,3^{4}\cdot 239^{3} \) |
$Q_8:S_4$ (as 8T40) |
Trivial
|
| 8.2.1105805439.2 |
x8 - 2x7 + 7x5 - 6x4 - 14x3 + 11x2 + 9x - 11 |
\( -\,3^{4}\cdot 239^{3} \) |
$Q_8:S_4$ (as 8T40) |
Trivial
|
| 8.2.1119744000.3 |
x8 - 4x7 + 12x6 - 22x5 + 37x4 - 42x3 + 40x2 - 22x + 3 |
\( -\,2^{12}\cdot 3^{7}\cdot 5^{3} \) |
$Q_8:S_4$ (as 8T40) |
Trivial
|
| 8.2.1119744000.4 |
x8 - 4x7 + 10x6 - 16x5 + 13x4 - 4x3 - 16x2 + 16x - 4 |
\( -\,2^{12}\cdot 3^{7}\cdot 5^{3} \) |
$Q_8:S_4$ (as 8T40) |
Trivial
|
| 8.2.1146228736.1 |
x8 - 3x6 + 4x4 - 3x2 - 1 |
\( -\,2^{12}\cdot 23^{4} \) |
$Q_8:S_4$ (as 8T40) |
Trivial
|
| 8.2.1146228736.2 |
x8 + 3x6 + 4x4 + 3x2 - 1 |
\( -\,2^{12}\cdot 23^{4} \) |
$Q_8:S_4$ (as 8T40) |
Trivial
|
| 8.2.1327373299.1 |
x8 - 3x7 - x6 + 8x5 + x4 - 3x3 + x2 + 2x - 5 |
\( -\,7^{3}\cdot 157^{3} \) |
$Q_8:S_4$ (as 8T40) |
Trivial
|
| 8.0.1406080000.1 |
x8 - 4x6 + 2x4 + 13 |
\( 2^{10}\cdot 5^{4}\cdot 13^{3} \) |
$Q_8:S_4$ (as 8T40) |
Trivial
|
| 8.0.1440146061.1 |
x8 - 6x6 - 5x5 + 9x4 + 21x3 + 19x2 + 9x + 3 |
\( 3^{10}\cdot 29^{3} \) |
$Q_8:S_4$ (as 8T40) |
$[2]$
|
| 8.0.1448511488.1 |
x8 - 3x6 + 3x4 + 6x2 + 2 |
\( 2^{11}\cdot 29^{4} \) |
$Q_8:S_4$ (as 8T40) |
Trivial
|
| 8.0.1488770000.1 |
x8 - 3x7 + 10x6 - 23x5 + 32x4 - 19x3 + 5x + 5 |
\( 2^{4}\cdot 5^{4}\cdot 53^{3} \) |
$Q_8:S_4$ (as 8T40) |
Trivial
|