| 8.0.37822859361.1 |
x8 - 4x7 + 7x6 - 7x5 + 7x4 - 7x3 + 7x2 + 5x + 1 |
\( 3^{8}\cdot 7^{8} \) |
$\PSL(2,7)$ (as 8T37) |
$[4]$
|
| 8.0.40904253504.1 |
x8 - x7 + 7x6 - x5 + 33x4 + x3 + 61x2 + 13x + 58 |
\( 2^{6}\cdot 3^{4}\cdot 53^{4} \) |
$\PSL(2,7)$ (as 8T37) |
$[4]$
|
| 8.0.46352367616.5 |
x8 - 4x7 + 14x6 - 24x5 + 29x4 - 32x3 + 18x2 - 16x + 17 |
\( 2^{16}\cdot 29^{4} \) |
$\PSL(2,7)$ (as 8T37) |
Trivial
|
| 8.0.62816399424.1 |
x8 - 3x7 + 4x6 + 2x5 - 10x4 + 16x3 - 20x + 28 |
\( 2^{6}\cdot 3^{4}\cdot 59^{4} \) |
$\PSL(2,7)$ (as 8T37) |
$[4]$
|
| 8.0.64537845849.1 |
x8 - 2x7 + 10x6 - 17x5 + 28x4 - 38x3 + 34x2 - 17x + 10 |
\( 3^{6}\cdot 97^{4} \) |
$\PSL(2,7)$ (as 8T37) |
$[2]$
|
| 8.0.82653950016.1 |
x8 - 2x7 + 2x6 - 8x5 + 16x4 - 16x3 + 14x2 - 10x + 4 |
\( 2^{6}\cdot 3^{6}\cdot 11^{6} \) |
$\PSL(2,7)$ (as 8T37) |
$[6]$
|
| 8.0.89685275625.1 |
x8 - 3x7 + 9x6 - 21x5 + 44x4 - 69x3 + 84x2 - 84x + 73 |
\( 3^{4}\cdot 5^{4}\cdot 11^{6} \) |
$\PSL(2,7)$ (as 8T37) |
$[4]$
|
| 8.0.116101021696.1 |
x8 - 4x7 + 10x6 - 12x5 - 7x4 + 44x3 - 46x2 - 4x + 95 |
\( 2^{16}\cdot 11^{6} \) |
$\PSL(2,7)$ (as 8T37) |
Trivial
|
| 8.0.118861526169.4 |
x8 - 3x7 + x6 + 9x5 - 3x4 - 57x3 + 133x2 - 132x + 76 |
\( 3^{6}\cdot 113^{4} \) |
$\PSL(2,7)$ (as 8T37) |
$[2]$
|
| 8.0.119538913536.1 |
x8 - 4x7 + 14x6 - 28x5 + 49x4 - 56x3 + 56x2 - 14x + 7 |
\( 2^{8}\cdot 3^{4}\cdot 7^{8} \) |
$\PSL(2,7)$ (as 8T37) |
$[2]$
|
| 8.0.159507579456.5 |
x8 - x7 + 5x6 - 19x5 + 31x4 - 47x3 + 47x2 - 17x + 4 |
\( 2^{6}\cdot 3^{6}\cdot 43^{4} \) |
$\PSL(2,7)$ (as 8T37) |
$[2]$
|
| 8.0.230592040000.1 |
x8 - x7 + 14x4 - 28x3 + 28x2 - 14x + 14 |
\( 2^{6}\cdot 5^{4}\cdot 7^{8} \) |
$\PSL(2,7)$ (as 8T37) |
$[2]$
|
| 8.0.264287499921.2 |
x8 - 4x7 + 11x6 - 17x5 + 37x4 - 78x3 + 132x2 - 153x + 72 |
\( 3^{4}\cdot 239^{4} \) |
$\PSL(2,7)$ (as 8T37) |
$[4]$
|
| 8.0.268962555456.1 |
x8 - x7 - 7x6 - 7x5 + 7x4 + 49x3 + 77x2 + 31x + 4 |
\( 2^{6}\cdot 3^{6}\cdot 7^{8} \) |
$\PSL(2,7)$ (as 8T37) |
$[2]$
|
| 8.0.279841000000.2 |
x8 - x7 + x6 - 11x5 + 11x4 + 35x3 + 45x2 + 35x + 10 |
\( 2^{6}\cdot 5^{6}\cdot 23^{4} \) |
$\PSL(2,7)$ (as 8T37) |
$[8]$
|
| 8.0.283449760000.1 |
x8 - 2x7 + 4x6 + 2x5 + 27x4 - 46x3 + 84x2 - 10x + 59 |
\( 2^{8}\cdot 5^{4}\cdot 11^{6} \) |
$\PSL(2,7)$ (as 8T37) |
$[2]$
|
| 8.0.296990121024.3 |
x8 - 3x7 + 6x6 + 2x5 + 6x3 + 4x2 + 6x + 6 |
\( 2^{6}\cdot 3^{8}\cdot 29^{4} \) |
$\PSL(2,7)$ (as 8T37) |
$[4]$
|
| 8.0.313044726016.12 |
x8 - 2x7 + 2x6 - 14x5 + 46x4 - 86x3 + 126x2 - 118x + 49 |
\( 2^{8}\cdot 11^{4}\cdot 17^{4} \) |
$\PSL(2,7)$ (as 8T37) |
$[2]$
|
| 8.0.377801998336.1 |
x8 - 4x7 + 14x6 - 28x5 + 63x4 - 84x3 + 98x2 - 52x + 19 |
\( 2^{16}\cdot 7^{8} \) |
$\PSL(2,7)$ (as 8T37) |
$[2]$
|
| 8.0.377801998336.3 |
x8 - 4x7 + 14x6 - 28x5 + 49x4 - 56x3 + 56x2 - 24x + 5 |
\( 2^{16}\cdot 7^{8} \) |
$\PSL(2,7)$ (as 8T37) |
$[2]$
|
| 8.0.377801998336.4 |
x8 + 28x4 + 112x2 - 32x + 84 |
\( 2^{16}\cdot 7^{8} \) |
$\PSL(2,7)$ (as 8T37) |
Trivial
|
| 8.0.481481944321.1 |
x8 - 4x7 + 49x4 - 42x3 + 77x2 - 31x + 19 |
\( 7^{8}\cdot 17^{4} \) |
$\PSL(2,7)$ (as 8T37) |
$[2]$
|
| 8.0.507422576896.1 |
x8 - 4x7 + 9x6 - 12x5 + 4x4 - 4x3 + 13x2 + 4x + 1 |
\( 2^{8}\cdot 211^{4} \) |
$\PSL(2,7)$ (as 8T37) |
$[4]$
|
| 8.0.531901827856.1 |
x8 + 10x6 + 12x4 - 28x3 - 58x2 + 28x + 51 |
\( 2^{4}\cdot 7^{4}\cdot 61^{4} \) |
$\PSL(2,7)$ (as 8T37) |
$[4]$
|
| 8.0.646274503744.1 |
x8 - x7 - 4x6 - 12x5 + 8x4 + 64x3 + 16x2 - 32x + 24 |
\( 2^{6}\cdot 317^{4} \) |
$\PSL(2,7)$ (as 8T37) |
$[6]$
|
| 8.0.667841990656.8 |
x8 - 2x7 + 16x6 - 34x5 + 44x4 - 22x3 - 44x2 + 26x + 23 |
\( 2^{12}\cdot 113^{4} \) |
$\PSL(2,7)$ (as 8T37) |
Trivial
|
| 8.0.731763906624.1 |
x8 - 3x7 + 19x6 - 19x5 + 41x4 + 7x3 + 9x2 + 7x + 10 |
\( 2^{6}\cdot 3^{4}\cdot 109^{4} \) |
$\PSL(2,7)$ (as 8T37) |
$[4]$
|
| 8.0.743885550144.2 |
x8 - x7 - 16x6 + 38x5 + 34x4 - 236x3 + 380x2 - 296x + 100 |
\( 2^{6}\cdot 3^{8}\cdot 11^{6} \) |
$\PSL(2,7)$ (as 8T37) |
$[2]$
|
| 8.0.743885550144.3 |
x8 - 2x7 + 10x6 - 16x5 + 38x4 - 34x3 + 40x2 - 50x + 148 |
\( 2^{6}\cdot 3^{8}\cdot 11^{6} \) |
$\PSL(2,7)$ (as 8T37) |
$[4]$
|
| 8.0.767418048576.8 |
x8 - 2x7 - 2x6 + 4x5 + 12x4 - 4x3 - 20x2 - 4x + 16 |
\( 2^{6}\cdot 3^{4}\cdot 23^{6} \) |
$\PSL(2,7)$ (as 8T37) |
$[12]$
|
| 8.0.922368160000.1 |
x8 - 2x7 + 14x6 - 28x5 + 147x4 - 196x3 + 518x2 - 322x + 497 |
\( 2^{8}\cdot 5^{4}\cdot 7^{8} \) |
$\PSL(2,7)$ (as 8T37) |
$[2]$
|
| 8.0.1151964303616.16 |
x8 - 2x7 + 8x5 + 7x4 - 68x3 + 218x2 - 336x + 239 |
\( 2^{8}\cdot 7^{4}\cdot 37^{4} \) |
$\PSL(2,7)$ (as 8T37) |
$[2]$
|
| 8.0.1156418486161.1 |
x8 - 2x7 - 11x6 - 16x5 + 49x4 + 183x3 + 303x2 + 244x + 103 |
\( 17^{4}\cdot 61^{4} \) |
$\PSL(2,7)$ (as 8T37) |
$[2]$
|
| 8.0.1157018619904.4 |
x8 - 28x5 + 7x4 + 196x2 - 80x + 28 |
\( 2^{12}\cdot 7^{10} \) |
$\PSL(2,7)$ (as 8T37) |
$[4]$
|
| 8.0.1157018619904.5 |
x8 - 14x5 + 49x4 - 98x3 + 126x2 - 104x + 42 |
\( 2^{12}\cdot 7^{10} \) |
$\PSL(2,7)$ (as 8T37) |
Trivial
|
| 8.0.1292841769024.1 |
x8 - x7 + 4x6 + 2x5 - 6x4 + 14x3 - 2x2 - 2x + 30 |
\( 2^{6}\cdot 13^{4}\cdot 29^{4} \) |
$\PSL(2,7)$ (as 8T37) |
$[4]$
|
| 8.0.1442919878656.7 |
x8 - 6x5 - 3x4 + 10x3 + 10x2 - 8x + 2 |
\( 2^{12}\cdot 137^{4} \) |
$\PSL(2,7)$ (as 8T37) |
Trivial
|
| 8.0.1464351690816.2 |
x8 - x7 + 14x5 - 28x4 - 14x3 + 70x2 - 48x + 34 |
\( 2^{6}\cdot 3^{4}\cdot 7^{10} \) |
$\PSL(2,7)$ (as 8T37) |
$[4]$
|
| 8.0.1636073786281.3 |
x8 - 3x7 - 2x6 + 12x5 - 36x3 + 62x2 - 51x + 18 |
\( 11^{6}\cdot 31^{4} \) |
$\PSL(2,7)$ (as 8T37) |
$[12]$
|
| 8.0.1636073786281.4 |
x8 - x7 - 3x6 - 13x5 + 78x4 - 153x3 + 222x2 - 268x + 163 |
\( 11^{6}\cdot 31^{4} \) |
$\PSL(2,7)$ (as 8T37) |
$[2]$
|
| 8.0.1706808989601.1 |
x8 - 3x7 + 6x6 - 6x4 + 12x2 + 9x + 9 |
\( 3^{8}\cdot 127^{4} \) |
$\PSL(2,7)$ (as 8T37) |
$[4]$
|
| 8.0.1853320108689.1 |
x8 - 7x5 + 21x4 - 63x3 + 112x2 - 156x + 168 |
\( 3^{8}\cdot 7^{10} \) |
$\PSL(2,7)$ (as 8T37) |
$[4]$
|
| 8.0.1912622616576.1 |
x8 - 2x7 + 14x6 + 14x4 + 168x3 + 56x2 - 176x + 184 |
\( 2^{12}\cdot 3^{4}\cdot 7^{8} \) |
$\PSL(2,7)$ (as 8T37) |
$[2]$
|
| 8.0.1935192596544.2 |
x8 - x7 - 5x6 - x5 - 3x4 + 13x3 + 103x2 + 181x + 106 |
\( 2^{6}\cdot 3^{4}\cdot 139^{4} \) |
$\PSL(2,7)$ (as 8T37) |
$[2, 4]$
|
| 8.0.2046089933056.12 |
x8 - 6x6 - 2x5 + 19x4 + 6x3 - 16x2 + 16x + 25 |
\( 2^{8}\cdot 13^{4}\cdot 23^{4} \) |
$\PSL(2,7)$ (as 8T37) |
$[2]$
|
| 8.0.2048997570624.2 |
x8 - 3x7 - 3x6 + 9x5 + 21x4 - 27x3 - 15x2 - 45x + 108 |
\( 2^{6}\cdot 3^{8}\cdot 47^{4} \) |
$\PSL(2,7)$ (as 8T37) |
$[4]$
|
| 8.0.2048997570624.3 |
x8 - 3x7 + 6x5 + 18x4 + 18x3 + 36x2 + 54x + 54 |
\( 2^{6}\cdot 3^{8}\cdot 47^{4} \) |
$\PSL(2,7)$ (as 8T37) |
$[4]$
|
| 8.0.2122409008801.1 |
x8 - 4x7 + 12x6 + 12x5 - 58x4 + 80x3 + 243x2 + 88x + 13 |
\( 17^{4}\cdot 71^{4} \) |
$\PSL(2,7)$ (as 8T37) |
$[2]$
|
| 8.0.2214215424576.2 |
x8 - 4x7 + 20x6 - 40x5 + 88x4 - 80x3 + 68x2 - 110x + 61 |
\( 2^{6}\cdot 3^{6}\cdot 83^{4} \) |
$\PSL(2,7)$ (as 8T37) |
$[2]$
|
| 8.0.2420662999104.1 |
x8 - x7 + 7x6 + 21x5 + 63x4 + 105x3 + 105x2 + 51x + 12 |
\( 2^{6}\cdot 3^{8}\cdot 7^{8} \) |
$\PSL(2,7)$ (as 8T37) |
$[4]$
|