Learn more about

Further refine search

Results (displaying all 24 matches)

Label Polynomial Discriminant Galois group Class group
45.1.246012870627780535441003976786240313709044401656133556774425683161984460829.1 x45 - x - 1 \( 29\cdot 41\cdot 1451\cdot 23184662326519\cdot 476883331418375569\cdot 12897206214339827420730516506448469501 \) $S_{45}$ (as 45T10923) n/a
45.1.4219671405487469795007840774828326879559861579577302862304338876222359629344736024723456.1 x45 - 4x - 4 \( 2^{44}\cdot 61\cdot 6357179\cdot 171802225249\cdot 418161846581\cdot 8092657633001\cdot 14050885843711\cdot 75717538318411921 \) $S_{45}$ (as 45T10923) n/a
45.1.4291826594765663003976769757283345274790293039788651431152169438111179814672368012361728.1 x45 - 2x - 2 \( 2^{44}\cdot 79\cdot 1013\cdot 3048497342199756649472787573907155555919354990435889752547649745658279 \) $S_{45}$ (as 45T10923) n/a
45.1.4363981784043854162171875179128310024815115327623964513820163479392452705083033810632704.1 x45 - x - 2 \( 2^{44}\cdot 248063644451341028921653740958863069455169086701514772461232694206072023069 \) $S_{45}$ (as 45T10923) n/a
45.1.4508292162600242630883556704648400460481587420422697137695661123777640370655263975276544.1 x45 + 4x - 4 \( 2^{44}\cdot 523\cdot 326083\cdot 86999456098802843\cdot 17272128465413103990048781624806825473342473446407 \) $S_{45}$ (as 45T10923) n/a
45.1.461788013129114908410483449590003725369038828566163185526779909482248505594982451554016695549.1 x45 + x - 3 \( 41\cdot 281\cdot 2689\cdot 3061\cdot 9790127\cdot 497404856720178834753693302562002159288580122855457096966807286973147607143 \) $S_{45}$ (as 45T10923) n/a
45.3.6058627165206947772659446834243918770516708613809690476129633884301485702351604141067529951203.1 x45 - 3x - 1 \( -\,3^{45}\cdot 66012539\cdot 28278051239\cdot 68372307116461\cdot 16067992358028006974094700413220621293241 \) $S_{45}$ (as 45T10923) n/a
45.1.6058627165206947773155574123146601061506006978600515855618695047286794030995045341323877607453.1 x45 + 3x - 1 \( 3^{45}\cdot 991\cdot 5482500513935539\cdot 377455214821004106697105676903957430884841884160251179 \) $S_{45}$ (as 45T10923) n/a
45.1.6058631529188731816763723424393999654375027816929603165874164465794139866673324741195703779328.1 x45 + 3x - 2 \( 2^{44}\cdot 3^{45}\cdot 8431\cdot 40996793\cdot 141817543613\cdot 2378150503072556132510163888173917789 \) $S_{45}$ (as 45T10923) n/a
45.1.244285858873146597270950485090359427655149499875459692556282517088442376963378236627476654939853.1 x45 - 2x - 3 \( 1294351\cdot 15211842839\cdot 12406932915542118318333796429503421775022365907034043080317641893056767027113877 \) $S_{45}$ (as 45T10923) n/a
45.1.244285858945301786549141643285464849500114249900281980391595599756436418244651127038142453210829.1 x45 - x - 3 \( 394759\cdot 17295724778674525629079\cdot 35778944257145220698016100371727896939679299851967974758576839513389 \) $S_{45}$ (as 45T10923) n/a
45.3.2538735027699687144412949043193794155334981938018953417004197950355756515384020435188568211066978304.1 x45 - 4x - 2 \( -\,2^{44}\cdot 2834789\cdot 50906920605427195566727055793056252609442010581017707883785519702989763984245671 \) $S_{45}$ (as 45T10923) n/a
45.1.2538735027704051126196993147470384305415865796338156536916887694886338008038184756909168339240806429.1 x45 + 4x - 1 \( 41\cdot 547\cdot 107899001480198069\cdot 1049128696814844200913942061815894663458796386336770071320289318330982069823083 \) $S_{45}$ (as 45T10923) n/a
45.1.2538735027708415107981036755619685552814458665358994866004197950355756515384020435188568211066978304.1 x45 + 4x - 2 \( 2^{44}\cdot 7\cdot 2687\cdot 7672411003064197011128146422219758607223049237728835572181071717898989380370681541 \) $S_{45}$ (as 45T10923) n/a
45.1.19192994859835473355074744872607517828470978752000567240134947162857788042359527794953668092003090432.1 x45 - 2x - 4 \( 2^{86}\cdot 166289\cdot 17194056911\cdot 97370596099401809\cdot 891032222208071115812369072217086199036083 \) $S_{45}$ (as 45T10923) n/a
45.1.19192994859835509432669383969212002292962206261198182455865052837142211957640472205046331907996909568.1 x45 + 2x - 4 \( 2^{86}\cdot 59\cdot 4204468550022735231197289241839185259716162221609033017672820541904702343 \) $S_{45}$ (as 45T10923) n/a
45.1.76771973380714800368540484776128561547606454015039703186896834125835534205860133326675258804296220672.1 x45 - 3x - 4 \( 2^{89}\cdot 3^{45}\cdot 61\cdot 1183211\cdot 1595562959\cdot 364561370664661220582384110700994703 \) $S_{45}$ (as 45T10923) n/a
45.3.1189520361647311641758426463337537892861867432950966956771500000000000000000000000000000000000000000000.1 x45 - 5x - 2 \( -\,2^{44}\cdot 5^{45}\cdot 73\cdot 44175746519\cdot 6490952564449\cdot 14705222713099\cdot 7728853529686445339 \) $S_{45}$ (as 45T10923) n/a
45.3.2331459899057296634593715767930075025465673353711726231865473889294756562549082445912063121795654296875.1 x45 - 5x - 3 \( -\,5^{43}\cdot 157\cdot 1531\cdot 4729\cdot 4801\cdot 15817\cdot 31873\cdot 97849\cdot 18359951437\cdot 35107655355337\cdot 11818574496687068323309 \) $S_{45}$ (as 45T10923) n/a
45.1.14571624430179569793531616197812945660407245922831180230813125000000000000000000000000000000000000000000.1 x45 + 5x - 2 \( 2^{42}\cdot 5^{46}\cdot 53\cdot 22846124160878734429091761\cdot 19254823833912889768262197122097 \) $S_{45}$ (as 45T10923) n/a
45.3.58286497720718274810144680747147506051478902807466401720132587310255469418507345835678279399871826171875.1 x45 - 5x - 1 \( -\,5^{45}\cdot 13\cdot 47\cdot 241\cdot 313\cdot 10159\cdot 1560681193\cdot 441481146991\cdot 24561359840613046207\cdot 258812619101427272051 \) $S_{45}$ (as 45T10923) n/a
45.1.58286497720718274810144680747643633340381585098455700084923412689744530581492654164321720600128173828125.1 x45 + 5x - 1 \( 5^{46}\cdot 101\cdot 677\cdot 119549\cdot 842977\cdot 818961053\cdot 72679644912024426232556982099430424324466270773 \) $S_{45}$ (as 45T10923) n/a
45.1.58286497965004133755446467296539263755218654063128946008419152767631085936272938852198421955108642578125.1 x45 + 5x - 3 \( 5^{46}\cdot 29\cdot 699023939659537\cdot 20232880457368282662668714658655455158647688849895180601 \) $S_{45}$ (as 45T10923) n/a
45.1.58363269700157616775720169005079208736173110322987448401920000000000000000000000000000000000000000000000.1 x45 + 5x - 4 \( 2^{89}\cdot 5^{46}\cdot 149\cdot 4453111121681026051225605378891768357546101 \) $S_{45}$ (as 45T10923) n/a


Download all search results for