Learn more about

Further refine search

Results (displaying all 24 matches)

Label Polynomial Discriminant Galois group Class group
43.1.17193642429484970947547009316647777700494014568443353175841873665979443.1 x43 - x - 1 \( -\,109\cdot 809\cdot 397519523\cdot 490494801020731074863763714627948664201245545640512874061 \) $S_{43}$ (as 43T10) n/a
43.1.17493904304575564092260553260976286616122110509580830730313660732011571.1 x43 + x - 1 \( -\,59\cdot 397\cdot 877\cdot 935899\cdot 2402649604770175349\cdot 378726079619435938610415929241631681351 \) $S_{43}$ (as 43T10) n/a
43.1.73637590561926486479405912723338063733861614147899437889774600865607334016376111104.1 x43 - 4x - 4 \( -\,2^{42}\cdot 13\cdot 10239413\cdot 21464295562499\cdot 7440631653201968227\cdot 787580389820760746433715250923 \) $S_{43}$ (as 43T10) n/a
43.1.74958156254086214703443254449187449178282319802617704397438354084969927035548860416.1 x43 - 2x - 2 \( -\,2^{42}\cdot 5577217\cdot 417006008813\cdot 34910848872522797\cdot 201068225194855523\cdot 1043987668577822729 \) $S_{43}$ (as 43T10) n/a
43.1.76278721946245792796543050878464477850730861202878156857131538565555284161188593664.1 x43 - x - 2 \( -\,2^{43}\cdot 20380951\cdot 61480213\cdot 6920759952665299941538917396384169453478934159485941391 \) $S_{43}$ (as 43T10) n/a
43.1.76278721946245942927480596140901011555290620195994458453535643977522773548439024487.1 x43 - x - 4 \( -\,229\cdot 293\cdot 4986887\cdot 566527637659\cdot 4239521573605607851\cdot 94914557329966604524084292149520799491137 \) $S_{43}$ (as 43T10) n/a
43.1.77599287638405671151517937900886220067123731112054237412765860523695113073894359040.1 x43 + 2x - 2 \( -\,2^{42}\cdot 5\cdot 19\cdot 4987\cdot 11154877\cdot 914818621983827673311\cdot 3649515064680458585719692338597379997 \) $S_{43}$ (as 43T10) n/a
43.1.78919853330565399375555279626735605511544436766772503920429613743057706093067108352.1 x43 + 4x - 4 \( -\,2^{42}\cdot 90073\cdot 2923961\cdot 68133429255140007202167625043712385709578872658361664978371 \) $S_{43}$ (as 43T10) n/a
43.3.49281526270717699300509198722877092539271399739749264767815294437558226291076362607004621.1 x43 - 3x - 1 \( 193\cdot 255344695703200514510410356077083381032494299169685309677799453044343141404540738896397 \) $S_{43}$ (as 43T10) n/a
43.1.49281602549439645563795899570503535096009803731586754262094262078677622576674184527609856.1 x43 + 3x - 2 \( -\,2^{43}\cdot 83\cdot 67502042791558118041804533258686204716076628322729472986933623501167834329 \) $S_{43}$ (as 43T10) n/a
43.1.1897738148225932665352052841514539485919791655231439979873933030555398665105804881388324651.1 x43 - 2x - 3 \( -\,3^{42}\cdot 139\cdot 124775347877419985548920353165571925958504525515910258911325684164601 \) $S_{43}$ (as 43T10) n/a
43.1.1897738149546498357511630934614335915196820327679981380134385490248583145691162007028057899.1 x43 - x - 3 \( -\,3^{43}\cdot 3929\cdot 27164077\cdot 1696291894163\cdot 4471934430678427\cdot 7140840614667743763301231198589 \) $S_{43}$ (as 43T10) n/a
43.1.1947019675817216056829634037641788571828352280680706931518322895195722202712552030367074091.1 x43 + 3x - 3 \( -\,3^{42}\cdot 11\cdot 4458821\cdot 2188196233\cdot 250952988948637\cdot 660672576607742254821201853013034985249 \) $S_{43}$ (as 43T10) n/a
43.1.3354773669271577653568285803640546404693410239170973401358900578361902104169371242332059336704.1 x43 - 2x - 4 \( -\,2^{82}\cdot 17\cdot 911\cdot 1321\cdot 196825567\cdot 172286779949557395632536883985559201167052023742651489 \) $S_{43}$ (as 43T10) n/a
43.1.11615818670173463204840555036546350439901529918004080992211006956821939425490704861593631716403.1 x43 + 4x - 1 \( -\,181\cdot 155556871099633\cdot 21154104412279303\cdot 19502370656284022684705331520651631010500317670728311348739537 \) $S_{43}$ (as 43T10) n/a
43.1.11615818670249741926786783635700464005809046848845495205636184619664502520703084303881154330624.1 x43 + 4x - 2 \( -\,2^{42}\cdot 13\cdot 53\cdot 359\cdot 379\cdot 397\cdot 15583\cdot 15667\cdot 16763\cdot 1652591\cdot 7443949\cdot 81974567114861\cdot 17195311805158423964285480495891 \) $S_{43}$ (as 43T10) n/a
43.1.11617716408323009703198049473838535290845779191322444325813440848297619565283220181726993794859.1 x43 + 4x - 3 \( -\,3^{42}\cdot 17\cdot 251\cdot 24883154146172620815006293556540010583439231599502655506743920009280153 \) $S_{43}$ (as 43T10) n/a
43.1.335477317645632815204821422239306587903706814127360732280247849979340897599838242672095300419584.1 x43 - 3x - 4 \( -\,2^{42}\cdot 5736251\cdot 13297659175117020385300439521039825046372945434356686517822982914329253832871 \) $S_{43}$ (as 43T10) n/a
43.1.42669778834265525646357377125943811028661226892061887227006364333992726275526826083130013680402432.1 x43 + 5x - 2 \( -\,2^{43}\cdot 4850992221948391221116864599701308523965647838401979155037948241214590584096052462329 \) $S_{43}$ (as 43T10) n/a
43.3.170679115337062026306707562240488543267018465011509144916187967841691937460987908046922232801004493.1 x43 - 5x - 1 \( 67\cdot 2547449482642716810547874063290873780104753209127002162928178624502864738223700120103316907477679 \) $S_{43}$ (as 43T10) n/a
43.1.3772838381179050124528639896195900262054652258977602756862847748815326440308126620948314666748046875.1 x43 - 5x - 5 \( -\,5^{42}\cdot 1201\cdot 3109\cdot 627374521\cdot 7083328981731612358415823717337673911296516278980882783 \) $S_{43}$ (as 43T10) n/a
43.1.3943517496516112150835347458453582447751155694936658911095683494357512392337557882171078773215030811.1 x43 - x - 5 \( -\,4378013\cdot 253946916604529\cdot 37511360891773121\cdot 94558584147022639554815783215214951921556301363567987461405383 \) $S_{43}$ (as 43T10) n/a
43.1.3943517496565393677106065157771585550778608351568190864096409045741449797284696939192468796554047003.1 x43 + 3x - 5 \( -\,4787\cdot 56783432887\cdot 65016935311\cdot 223137316352143056032093232478629204773290672599490333442273344596696250817 \) $S_{43}$ (as 43T10) n/a
43.1.4114196611853174177142055020711564895322749724040428609272847748815326440308126620948314666748046875.1 x43 + 5x - 5 \( -\,5^{42}\cdot 68281\cdot 264999458923518261034367410401624235839813453110759740473297621067 \) $S_{43}$ (as 43T10) n/a


Download all search results for