Learn more about

Further refine search

Results (displaying all 34 matches)

Label Polynomial Discriminant Galois group Class group
40.0.11976663048684220554521970551011110940069807894780803482990048041.1 x40 - x + 1 \( 89\cdot 2963\cdot 2969\cdot 36703533640127\cdot 206798756592464370511\cdot 2015339302026829599091 \) $S_{40}$ (as 40T315842) Trivial (GRH)
40.2.12201853343608362939601549448988889059930192105219196517009951959.1 x40 - x - 1 \( -\,25788481\cdot 473151301296433975293137639591447400873676588598576105239 \) $S_{40}$ (as 40T315842) Trivial (GRH)
40.2.123799673865700652129832399822361287621723938537943027700441950831650013184.1 x40 - 4x - 1 \( -\,2^{40}\cdot 65581\cdot 130948229477800849\cdot 13111186908622089242206486448360790839011 \) $S_{40}$ (as 40T315842) n/a
40.2.123799673877789910325967696453145287621723938537943027700441950831650013184.1 x40 - 2x - 1 \( -\,2^{40}\cdot 299179\cdot 176896234253\cdot 2127502014851899658221712726961346777625280857 \) $S_{40}$ (as 40T315842) n/a
40.0.3199270315596589030129696245994777912378276061462056972299558049168349986816.1 x40 - 4x + 4 \( 2^{40}\cdot 168323\cdot 1917232819781\cdot 9016392149180870791777884329882006637603974407 \) $S_{40}$ (as 40T315842) n/a
40.2.3446869663327990334389339055406944967621723938537943027700441950831650013184.1 x40 - 4x - 4 \( -\,2^{40}\cdot 195992147998081969\cdot 15995078009601298847824572226328581653291688711 \) $S_{40}$ (as 40T315842) n/a
40.0.6522340305058878712389213896695639352378276061462056972299558049168349986816.1 x40 - 2x + 2 \( 2^{40}\cdot 7\cdot 709\cdot 3469\cdot 45247\cdot 9564613\cdot 796155428932457198813694339611851235726797373 \) $S_{40}$ (as 40T315842) n/a
40.0.6646139978924466769371573230209183090551011110940069807894780803482990048041.1 x40 - x + 2 \( 59\cdot 1459\cdot 3833\cdot 1738871593\cdot 3542704547\cdot 3269797924202183308143643467236069456997219997027 \) $S_{40}$ (as 40T315842) n/a
40.2.6769939652790280016648856706107806407621723938537943027700441950831650013184.1 x40 - 2x - 2 \( -\,2^{40}\cdot 41\cdot 285346141\cdot 454772160964243\cdot 1157271450150352380488274641452541109673 \) $S_{40}$ (as 40T315842) n/a
40.2.1368894135157044344794112376926497609757905625361762098834793591080436851093471159.1 x40 - 3x + 1 \( -\,67\cdot 20431255748612602161106154879499964324744860080026299982608859568364729120798077 \) $S_{40}$ (as 40T315842) n/a
40.2.1368894135157044368972628769219081103881425625361762098834793591080436851093471159.1 x40 - 3x - 1 \( -\,317\cdot 126493\cdot 709237\cdot 5225047\cdot 5648197\cdot 991002953\cdot 30082576347511\cdot 54709495555999135006716598974751 \) $S_{40}$ (as 40T315842) n/a
40.0.47623491463812503995875147927428631066430254374638237901165206408919563148906528841.1 x40 - 3x + 3 \( 3^{39}\cdot 6893916847\cdot 1704614809630888222612527785401257947637299618322827509 \) $S_{40}$ (as 40T315842) n/a
40.0.48992385475169874487057866370680015717166392378276061462056972299558049168349986816.1 x40 - 2x + 3 \( 2^{40}\cdot 3^{40}\cdot 61\cdot 17393\cdot 49999\cdot 118358164571\cdot 314964076619\cdot 1853333925864801067 \) $S_{40}$ (as 40T315842) n/a
40.0.48992385598969548352645923353039349230710130551011110940069807894780803482990048041.1 x40 - x + 3 \( 3^{40}\cdot 677\cdot 5952367403321660141326428487365658014394958115455011167043733 \) $S_{40}$ (as 40T315842) n/a
40.2.48992385598969548352871113647963491615789709448988889059930192105219196517009951959.1 x40 - x - 3 \( -\,3^{39}\cdot 47\cdot 31247\cdot 1492676502904837324513\cdot 5514774660213950753706902645463792581 \) $S_{40}$ (as 40T315842) n/a
40.2.50361279734126592709641889073574209780069585625361762098834793591080436851093471159.1 x40 - 3x - 3 \( -\,3^{39}\cdot 19\cdot 29\cdot 22553618218752278266208944368360557495082715636402158894791027 \) $S_{40}$ (as 40T315842) n/a
40.2.136119180930214450437992564702356620013434883881159515925662787473504462935871700598784.1 x40 - 4x + 1 \( -\,2^{80}\cdot 5317370417\cdot 21174967819074018167987909988947655427216799295477127 \) $S_{40}$ (as 40T315842) n/a
40.2.136119180936860590416929233325071801606583668521159515925662787473504462935871700598784.1 x40 - 4x - 2 \( -\,2^{80}\cdot 41\cdot 47\cdot 75109\cdot 91086967\cdot 8540626670650203198360722999925267617168459339 \) $S_{40}$ (as 40T315842) n/a
40.2.136168173315813419986357412479053267725605195561159515925662787473504462935871700598784.1 x40 - 4x - 3 \( -\,2^{80}\cdot 3^{39}\cdot 22898527\cdot 1219719433\cdot 995129348796489940662957347 \) $S_{40}$ (as 40T315842) n/a
40.0.913438523331783373958836595284644431933781318478094569015365514243074889512292087496704.1 x40 - 2x + 4 \( 2^{38}\cdot 7\cdot 23\cdot 643\cdot 1621\cdot 19802481879023096430651036170353377414078397518352976208297537134327 \) $S_{40}$ (as 40T315842) n/a
40.2.913438523331845273795769445610709342636134360241905430984634485756925110487707912503296.1 x40 - 2x - 4 \( -\,2^{38}\cdot 127\cdot 4663\cdot 27761297\cdot 202129917885388785314297446219230581863638472574083092701289647 \) $S_{40}$ (as 40T315842) n/a
40.0.3653752724433122138464855198420134476350474537774374638237901165206408919563148906528841.1 x40 - 3x + 4 \( 20611\cdot 84491007767770337133473\cdot 2098116497816396572885715162595405369382361532980887707054947 \) $S_{40}$ (as 40T315842) n/a
40.0.3653754093327257295509211969195560087068638817650551011110940069807894780803482990048041.1 x40 - x + 4 \( 487\cdot 503\cdot 47143\cdot 205427\cdot 1540166343925677624072393302991232358238541202032450757174530380307948021 \) $S_{40}$ (as 40T315842) n/a
40.2.3653754093327257295509212194385855011211023897229448988889059930192105219196517009951959.1 x40 - x - 4 \( -\,1607\cdot 934111\cdot 1438075378526603\cdot 8959474307278141\cdot 1679138406187605606151\cdot 112505635596093083651652679 \) $S_{40}$ (as 40T315842) n/a
40.2.113782983514285285698196744032513830356987213682796689968476703143096528947353363037109375.1 x40 - 5x + 3 \( -\,3^{39}\cdot 5^{40}\cdot 61\cdot 12041\cdot 136952659\cdot 30689184606850102963971847171 \) $S_{40}$ (as 40T315842) n/a
40.2.448780256235102043342850487055115349588191932777214849422937521182510769396774506768367616.1 x40 - 2x - 5 \( -\,2^{40}\cdot 11\cdot 17\cdot 41737\cdot 116269\cdot 170049501036703\cdot 25343270439968515087037\cdot 104368423294285319545974931771 \) $S_{40}$ (as 40T315842) n/a
40.2.1024046949613338769222867401809661474215725769645010209716290328287868760526180267333984375.1 x40 - 5x - 3 \( -\,3^{39}\cdot 5^{40}\cdot 7\cdot 238347710179\cdot 303974618220029\cdot 54782823889028869 \) $S_{40}$ (as 40T315842) n/a
40.2.1027700654714280427548828261132933681263445177752530209716290328287868760526180267333984375.1 x40 - 5x - 4 \( -\,5^{40}\cdot 1409\cdot 277273\cdot 1576117\cdot 395080003450900487\cdot 464487876487482964927883111701 \) $S_{40}$ (as 40T315842) n/a
40.0.5497558138879999969050081533574836967544648823479118094569015365514243074889512292087496704.1 x40 - 2x + 5 \( 2^{38}\cdot 14756617\cdot 125350691971\cdot 4593762876149\cdot 30747484746820755469\cdot 76548782187418446465742657723 \) $S_{40}$ (as 40T315842) n/a
40.0.20966185654899046829746680950948857026285694653604909790283709671712131239473819732666015625.1 x40 - 5x + 5 \( 5^{40}\cdot 17\cdot 14336401\cdot 3525770155993\cdot 13466978569729\cdot 199207656273558550240761826609 \) $S_{40}$ (as 40T315842) n/a
40.0.21990096436339069785549561995346039447233694818054358840484074337212526495537064128299401216.1 x40 - 4x + 5 \( 2^{80}\cdot 127\cdot 6163\cdot 316421509\cdot 14859902891161\cdot 112118849869317089\cdot 44082984501882421864081 \) $S_{40}$ (as 40T315842) n/a
40.2.21990232556888894135157044356883370573072789356819665625361762098834793591080436851093471159.1 x40 - 3x - 5 \( -\,11\cdot 22181713\cdot 39596371\cdot 384916815739\cdot 5913162119878974881045527037115866612882317962669562981259702677 \) $S_{40}$ (as 40T315842) n/a
40.2.23014279456140953170253319049051142973714305346395090209716290328287868760526180267333984375.1 x40 - 5x - 5 \( -\,5^{40}\cdot 7\cdot 11\cdot 23\cdot 139\cdot 263\cdot 49921\cdot 350641766719\cdot 1082515310287\cdot 28189512647977\cdot 73171096236097 \) $S_{40}$ (as 40T315842) n/a
40.4.818380493827663732613543259594667183634328825351814767249590812771172429611764531578535936000000000000000000000000.1 x40 - 20x39 + 198x38 + 1024x37 - 36068x36 + 259680x35 + 1497696x34 - 33104520x33 + 160318881x32 + 2610452884x31 - 6879123998x30 + 176849382312x29 + 4086792360022x28 + 22821387509152x27 + 183136305521712x26 + 3461079483509184x25 + 36791832526211640x24 + 243226399927467600x23 + 1630838116240157304x22 + 15684628915838324736x21 + 148676542850261879424x20 + 1094555702225628334944x19 + 6175860294063058627536x18 + 27500637919324676682528x17 + 99275620461555285598644x16 + 296069266727479829997360x15 + 737510649338519637350040x14 + 1538660650564897293864096x13 + 2665957190465280126142008x12 + 3726694189110949405579584x11 + 3860744775405859251848736x10 + 2003714444328444974615040x9 - 2364665119699343002683120x8 - 8369166482885528217875520x7 - 13648935640574809132025760x6 - 15631766178885580005797760x5 - 13468976980779782363580000x4 - 8765166219033111033484800x3 - 4168397528000957970432000x2 - 1320687936380639564236800x - 212265281716190997033600 \( 2^{111}\cdot 3^{56}\cdot 5^{24}\cdot 7^{29}\cdot 11^{12} \) $S_{40}$ (as 40T315842) n/a


Download all search results for