Learn more about

Further refine search

Results (displaying all 28 matches)

Label Polynomial Discriminant Galois group Class group
39.1.111519235660091198557729019736032936151076617850366100945341655.1 x39 - x - 1 \( -\,5\cdot 277\cdot 182969\cdot 824281\cdot 240883723\cdot 166682962769\cdot 13296842994412570838812157821 \) $S_{39}$ (as 39T306) Trivial (GRH)
39.1.113671059264051186521849878241745183709307592588026933074562263.1 x39 + x - 1 \( -\,2273\cdot 50009264964386795654135450172347199168195157319853468136631 \) $S_{39}$ (as 39T306) Trivial (GRH)
39.1.591488768481811428963044547642351525741394155127341131468704186081053911.1 x39 + 2x - 1 \( -\,15377\cdot 121075963\cdot 2526314190511031\cdot 125756254669634227064751087937702671316288931 \) $S_{39}$ (as 39T306) n/a
39.1.29766940929686730469453404466315757751925974444091458872611472369770299392.1 x39 - 4x - 4 \( -\,2^{38}\cdot 7\cdot 379\cdot 21067\cdot 725149\cdot 2449913\cdot 4899001\cdot 8078297\cdot 27558093317186226614976151637 \) $S_{39}$ (as 39T306) n/a
39.1.30358429698055946750954377821418319828678479539288607898860980038841401344.1 x39 - 2x - 2 \( -\,2^{38}\cdot 109\cdot 733\cdot 2281571\cdot 39359244317586317715611\cdot 15393176755842820625535054943 \) $S_{39}$ (as 39T306) n/a
39.1.30949918466424087120653371182538821476178128510706641437741657291847892992.1 x39 - x - 2 \( -\,2^{39}\cdot 6984751662407\cdot 51339275011007\cdot 156996140889988820454187313273455591 \) $S_{39}$ (as 39T306) n/a
39.1.30949918466425163032455347262376548002357192825523150128829529791279710855.1 x39 - x - 4 \( -\,5\cdot 7\cdot 41\cdot 659\cdot 2251\cdot 31793\cdot 2678539\cdot 118932731307271627\cdot 1435541730552723797020749364164204653 \) $S_{39}$ (as 39T306) n/a
39.1.31541407234794379313956324531623443982183489729682905951359995376983605248.1 x39 + 2x - 2 \( -\,2^{38}\cdot 248461\cdot 12252886339\cdot 405761380291\cdot 92891053318731020670026583775103003 \) $S_{39}$ (as 39T306) n/a
39.1.5184532600841803944263915674895587210566658055846276632709425783895556943647.1 x39 + 3x - 1 \( -\,3^{39}\cdot 14058971690735203\cdot 72182134610038326703\cdot 1260658330770821965649 \) $S_{39}$ (as 39T306) n/a
39.3.4360191917307956891935658158444803764507661447188598787724416645863129369703209.1 x39 - 3x - 1 \( 3^{40}\cdot 113\cdot 28201\cdot 37423\cdot 9699563\cdot 158105977\cdot 1960981103314503221804260659585541 \) $S_{39}$ (as 39T306) n/a
39.1.4360222867226423429693838075867172825179015867062293203673446975547354292158464.1 x39 + 3x - 2 \( -\,2^{39}\cdot 3^{39}\cdot 11\cdot 17\cdot 10465700849318807861983225793753454091541088157 \) $S_{39}$ (as 39T306) n/a
39.1.147739156433474749315843702498682821120110181270784796708171654921655559297397183.1 x39 - 3x - 3 \( -\,3^{39}\cdot 43\cdot 389\cdot 7503689519\cdot 5584497575731\cdot 52010336227194448203036429672690983 \) $S_{39}$ (as 39T306) n/a
39.1.152099348350782706321450419921178811406467720959718579205203664155545621741662655.1 x39 + x - 3 \( -\,5\cdot 378559\cdot 2269473744073\cdot 35407772863339269610949345166405887211353254003387332772693733 \) $S_{39}$ (as 39T306) n/a
39.1.156459540268090663324905313739714813728704402142940114144004698651774852056707519.1 x39 + 3x - 3 \( -\,3^{39}\cdot 7\cdot 1570897\cdot 3510971995405936089410206754104651560391127681333166283 \) $S_{39}$ (as 39T306) n/a
39.3.325174389229479288854843362066155701042596080647544598108539007844370930854873006080.1 x39 - 4x - 2 \( 2^{38}\cdot 5\cdot 307\cdot 2957\cdot 227299\cdot 2015359939\cdot 126713808485393773489\cdot 4489962387285740477847287937259 \) $S_{39}$ (as 39T306) n/a
39.1.325326488608779990027588899606730251036541369844682445198450852946268133768462561727.1 x39 + 4x - 3 \( -\,11\cdot 383\cdot 258901833901\cdot 46102253730493\cdot 6469499493992647369095124715187091139195245766876020603 \) $S_{39}$ (as 39T306) n/a
39.1.2126862202034452915901730414063261730179692260123929310064681767016944856455727546368.1 x39 - 2x - 4 \( -\,2^{74}\cdot 7\cdot 587\cdot 18500401851230653445409506417\cdot 1481161349950452069806304520009 \) $S_{39}$ (as 39T306) n/a
39.1.2126862202034748660285915022204012216857243541162305562612280341530069610290263097344.1 x39 + 2x - 4 \( -\,2^{74}\cdot 67\cdot 127\cdot 1705859\cdot 46716239\cdot 166046661282933582784622192068215692727450449 \) $S_{39}$ (as 39T306) n/a
39.1.8507444447946485844418286341728927378077567305462033667695206300572163873845601632256.1 x39 - 3x - 4 \( -\,2^{38}\cdot 3^{40}\cdot 2545710992654683535902750385463210805291971108293154349 \) $S_{39}$ (as 39T306) n/a
39.1.8507448808138403152375291948446349874067853663001722601477703332581397763908045897728.1 x39 + x - 4 \( -\,2^{38}\cdot 11\cdot 2813628951493196639314123190060474164409525131222578520126495056776845067 \) $S_{39}$ (as 39T306) n/a
39.1.40113869709381128552180746821850510752089597302511683056027631106471306712928407781376.1 x39 + 5x - 4 \( -\,2^{38}\cdot 7\cdot 68315637157987\cdot 305166292278799543829975774982369331856821036434790372619681 \) $S_{39}$ (as 39T306) n/a
39.3.1957072166951536895904481190802993016887123856431051011110940069807894780803482990048041.1 x39 - 5x - 1 \( 7927\cdot 100829867\cdot 421590019\cdot 318322193083061\cdot 332220892743431\cdot 54919251341659036283763722464180590181 \) $S_{39}$ (as 39T306) n/a
39.1.4551319558799813191937857662952947174343134462233413202747696872159030254011873008112727.1 x39 + 3x - 5 \( -\,3^{37}\cdot 151\cdot 2609\cdot 99918475519\cdot 325937638315547\cdot 787806508996424549807457661706822615567 \) $S_{39}$ (as 39T306) n/a
39.1.39004803857886589914228280658647578469613897459583108388651613131514750421047210693359375.1 x39 - 5x - 5 \( -\,5^{38}\cdot 818093\cdot 1607563\cdot 82561960451\cdot 987432138341051629144601850338133733171 \) $S_{39}$ (as 39T306) n/a
39.1.40961876020477934892824804957514913328056217551506497952573954413598228555987564313704207.1 x39 - 3x - 5 \( -\,3^{40}\cdot 101\cdot 2063\cdot 3701\cdot 268997\cdot 2960047\cdot 5487113197832234029051190326614909234836995144171 \) $S_{39}$ (as 39T306) n/a
39.1.40961876024838126218643993592829437447598858753241531636146517934365724171539541622257423.1 x39 - 2x - 5 \( -\,23\cdot 139\cdot 18119\cdot 1044213497\cdot 677194894382274307014809509780229502720468505732082805656194530298448213 \) $S_{39}$ (as 39T306) n/a
39.1.40961876024838127401621530331262000449545568958365685141156708328663776670554879764461327.1 x39 + 2x - 5 \( -\,229\cdot 1987\cdot 142963\cdot 1366812637\cdot 810114948493\cdot 156226602792479\cdot 2528280980108249089\cdot 1439749307724964790152813 \) $S_{39}$ (as 39T306) n/a
39.1.42918948191789663706037243265443859427530530252024108388651613131514750421047210693359375.1 x39 + 5x - 5 \( -\,5^{38}\cdot 11\cdot 18424603\cdot 298789856935478924630711\cdot 1948194133336354989156327267833 \) $S_{39}$ (as 39T306) n/a


Download all search results for