Learn more about

Further refine search

Results (displaying matches 1-50 of 1657) Next

Label Polynomial Discriminant Galois group Class group
36.0.11636034958735032166924075841251447518799351583251569.1 x36 - x35 + x33 - x32 + x30 - x29 + x27 - x26 + x24 - x23 + x21 - x20 + x18 - x16 + x15 - x13 + x12 - x10 + x9 - x7 + x6 - x4 + x3 - x + 1 \( 3^{18}\cdot 19^{34} \) $C_2\times C_{18}$ (as 36T2) $[9]$ (GRH)
36.0.599781089369859106058502013153430001897393515831230464.1 x36 - x18 + 1 \( 2^{36}\cdot 3^{90} \) $C_2\times C_{18}$ (as 36T2) $[19]$ (GRH)
36.0.2063964752380648518006363619171361060603216996551622656.1 x36 - x34 + x32 - x30 + x28 - x26 + x24 - x22 + x20 - x18 + x16 - x14 + x12 - x10 + x8 - x6 + x4 - x2 + 1 \( 2^{36}\cdot 19^{34} \) $C_2\times C_{18}$ (as 36T2) $[19]$ (GRH)
36.0.33294538757658815101209249418169888839879795074462890625.1 x36 - 76x27 + 5777x18 + 76x9 + 1 \( 3^{90}\cdot 5^{18} \) $C_2\times C_{18}$ (as 36T2) $[37]$ (GRH)
36.0.114573059505387793044837364496233492772337802886962890625.1 x36 - x35 + 2x34 - 3x33 + 5x32 - 8x31 + 13x30 - 21x29 + 34x28 - 55x27 + 89x26 - 144x25 + 233x24 - 377x23 + 610x22 - 987x21 + 1597x20 - 2584x19 + 4181x18 + 2584x17 + 1597x16 + 987x15 + 610x14 + 377x13 + 233x12 + 144x11 + 89x10 + 55x9 + 34x8 + 21x7 + 13x6 + 8x5 + 5x4 + 3x3 + 2x2 + x + 1 \( 5^{18}\cdot 19^{34} \) $C_2\times C_{18}$ (as 36T2) $[76]$ (GRH)
36.0.14212734556341031905549296191351828189377245025195450200601.1 x36 - 5x27 - 487x18 - 2560x9 + 262144 \( 3^{90}\cdot 7^{18} \) $C_2\times C_{18}$ (as 36T2) n/a
36.0.48908816365067043970916287981601635325839249495639564072729.1 x36 - x35 - x34 + 3x33 - x32 - 5x31 + 7x30 + 3x29 - 17x28 + 11x27 + 23x26 - 45x25 - x24 + 91x23 - 89x22 - 93x21 + 271x20 - 85x19 - 457x18 - 170x17 + 1084x16 - 744x15 - 1424x14 + 2912x13 - 64x12 - 5760x11 + 5888x10 + 5632x9 - 17408x8 + 6144x7 + 28672x6 - 40960x5 - 16384x4 + 98304x3 - 65536x2 - 131072x + 262144 \( 7^{18}\cdot 19^{34} \) $C_2\times C_{18}$ (as 36T2) $[2, 74]$ (GRH)
36.0.157229013891772345498599951736092754417390325814062078754816.1 x36 - 512x18 + 262144 \( 2^{54}\cdot 3^{90} \) $C_2\times C_{18}$ (as 36T2) n/a
36.0.157229013891772345498599951736092754417390325814062078754816.2 x36 + 512x18 + 262144 \( 2^{54}\cdot 3^{90} \) $C_2\times C_{18}$ (as 36T2) n/a
36.0.541055976048072725104260184584057273870769716344028569534464.1 x36 - 2x34 + 4x32 - 8x30 + 16x28 - 32x26 + 64x24 - 128x22 + 256x20 - 512x18 + 1024x16 - 2048x14 + 4096x12 - 8192x10 + 16384x8 - 32768x6 + 65536x4 - 131072x2 + 262144 \( 2^{54}\cdot 19^{34} \) $C_2\times C_{18}$ (as 36T2) n/a
36.0.541055976048072725104260184584057273870769716344028569534464.2 x36 + 2x34 + 4x32 + 8x30 + 16x28 + 32x26 + 64x24 + 128x22 + 256x20 + 512x18 + 1024x16 + 2048x14 + 4096x12 + 8192x10 + 16384x8 + 32768x6 + 65536x4 + 131072x2 + 262144 \( 2^{54}\cdot 19^{34} \) $C_2\times C_{18}$ (as 36T2) n/a
36.0.2215020037800761116296816339199940379209022060324490202578944.1 x36 - 17x34 + 169x32 - 1130x30 + 5664x28 - 21853x26 + 66874x24 - 162613x22 + 316711x20 - 487810x18 + 592078x16 - 549123x14 + 384931x12 - 190091x10 + 66033x8 - 13002x6 + 1695x4 - 45x2 + 1 \( 2^{36}\cdot 3^{18}\cdot 19^{32} \) $C_2\times C_{18}$ (as 36T2) $[171]$ (GRH)
36.0.48526755753740305052512669329205843844959387036328330042655969.1 x36 - 136x27 - 1187x18 - 2676888x9 + 387420489 \( 3^{90}\cdot 11^{18} \) $C_2\times C_{18}$ (as 36T2) n/a
36.0.80731161945559438248836517604483794680492496928434000672170721.1 x36 - x35 + 18x34 - 15x33 + 185x32 - 137x31 + 1281x30 - 831x29 + 6616x28 - 3799x27 + 26339x26 - 13196x25 + 83006x24 - 36260x23 + 208286x22 - 77735x21 + 418163x20 - 132518x19 + 666068x18 - 173318x17 + 834766x16 - 177139x15 + 804267x14 - 129870x13 + 582511x12 - 73129x11 + 302060x10 - 23507x9 + 107217x8 - 7128x7 + 23244x6 - 78x5 + 2775x4 - 165x3 + 126x2 + 9x + 1 \( 3^{18}\cdot 37^{34} \) $C_2\times C_{18}$ (as 36T2) $[19, 684]$ (GRH)
36.0.122958312298624478991860638998897557972401876087680816650390625.1 x36 - x35 + 26x34 - 15x33 + 413x32 - 173x31 + 4027x30 - 789x29 + 28017x28 - 2298x27 + 134511x26 + 7347x25 + 472642x24 + 48836x23 + 1180619x22 + 171615x21 + 2210278x20 + 335012x19 + 3064502x18 + 471070x17 + 3227734x16 + 424487x15 + 2498777x14 + 259210x13 + 1437594x12 + 75846x11 + 567447x10 - 2642x9 + 158238x8 - 9682x7 + 24598x6 - 3269x5 + 2670x4 - 215x3 + 80x2 + 5x + 1 \( 3^{18}\cdot 5^{18}\cdot 19^{32} \) $C_2\times C_{18}$ (as 36T2) $[9, 1629]$ (GRH)
36.0.166990115557548038315544519372094023948173088869511853538488801.1 x36 - x35 - 2x34 + 5x33 + x32 - 16x31 + 13x30 + 35x29 - 74x28 - 31x27 + 253x26 - 160x25 - 599x24 + 1079x23 + 718x22 - 3955x21 + 1801x20 + 10064x19 - 15467x18 + 30192x17 + 16209x16 - 106785x15 + 58158x14 + 262197x13 - 436671x12 - 349920x11 + 1659933x10 - 610173x9 - 4369626x8 + 6200145x7 + 6908733x6 - 25509168x5 + 4782969x4 + 71744535x3 - 86093442x2 - 129140163x + 387420489 \( 11^{18}\cdot 19^{34} \) $C_2\times C_{18}$ (as 36T2) n/a
36.0.392893567271872510941083606170645734076396278452324169894854656.1 x36 + 49x32 + 932x28 + 8695x24 + 41461x20 + 96055x16 + 93536x12 + 28314x8 + 1365x4 + 1 \( 2^{72}\cdot 19^{32} \) $C_2\times C_{18}$ (as 36T2) $[19, 171]$ (GRH)
36.36.799622233646074762983150698451178476894456963777140963130998784.1 x36 - 35x34 + 560x32 - 5426x30 + 35554x28 - 166634x26 + 576201x24 - 1494747x22 + 2929464x20 - 4334718x18 + 4805781x16 - 3932287x14 + 2318239x12 - 949739x10 + 256105x8 - 41769x6 + 3570x4 - 120x2 + 1 \( 2^{36}\cdot 3^{18}\cdot 19^{34} \) $C_2\times C_{18}$ (as 36T2) Trivial (GRH)
36.0.799622233646074762983150698451178476894456963777140963130998784.1 x36 + 37x34 + 628x32 + 6478x30 + 45354x28 + 227942x26 + 848161x24 + 2375189x22 + 5038516x20 + 8084594x18 + 9725341x16 + 8624289x14 + 5490811x12 + 2413645x10 + 691677x8 + 118407x6 + 10470x4 + 360x2 + 1 \( 2^{36}\cdot 3^{18}\cdot 19^{34} \) $C_2\times C_{18}$ (as 36T2) $[52934]$ (GRH)
36.0.799622233646074762983150698451178476894456963777140963130998784.2 x36 + 19x34 + 209x32 + 1558x30 + 8740x28 + 38095x26 + 132810x24 + 372723x22 + 848787x20 + 1558038x18 + 2298126x16 + 2670317x14 + 2415451x12 + 1629193x10 + 806113x8 + 262086x6 + 57399x4 + 5415x2 + 361 \( 2^{36}\cdot 3^{18}\cdot 19^{34} \) $C_2\times C_{18}$ (as 36T2) n/a
36.0.799622233646074762983150698451178476894456963777140963130998784.3 x36 + 3x34 + 9x32 + 27x30 + 81x28 + 243x26 + 729x24 + 2187x22 + 6561x20 + 19683x18 + 59049x16 + 177147x14 + 531441x12 + 1594323x10 + 4782969x8 + 14348907x6 + 43046721x4 + 129140163x2 + 387420489 \( 2^{36}\cdot 3^{18}\cdot 19^{34} \) $C_2\times C_{18}$ (as 36T2) n/a
36.0.981506694911161790066526032030527389205087841773474128847803921.1 x36 - 1810x27 + 3295783x18 + 35626230x9 + 387420489 \( 3^{90}\cdot 13^{18} \) $C_2\times C_{18}$ (as 36T2) n/a
36.0.3377557676335881126900903346326957671873387511586368229584565009.1 x36 - x35 + 4x34 - 7x33 + 19x32 - 40x31 + 97x30 - 217x29 + 508x28 - 1159x27 + 2683x26 - 6160x25 + 14209x24 - 32689x23 + 75316x22 - 173383x21 + 399331x20 - 919480x19 + 2117473x18 + 2758440x17 + 3593979x16 + 4681341x15 + 6100596x14 + 7943427x13 + 10358361x12 + 13471920x11 + 17603163x10 + 22812597x9 + 29996892x8 + 38440899x7 + 51549777x6 + 63772920x5 + 90876411x4 + 100442349x3 + 172186884x2 + 129140163x + 387420489 \( 13^{18}\cdot 19^{34} \) $C_2\times C_{18}$ (as 36T2) n/a
36.0.4579626957516085526487220638656255445999152174466832174789165056.1 x36 + 54x32 + 1143x28 + 12006x24 + 65367x20 + 175806x16 + 203838x12 + 70632x8 + 5481x4 + 1 \( 2^{72}\cdot 3^{88} \) $C_2\times C_{18}$ (as 36T2) $[6327]$ (GRH)
36.0.14319849782617254182563766395402434634362109577782479558283362304.1 x36 + 35x34 + 561x32 + 5456x30 + 35960x28 + 169911x26 + 593775x24 + 1560780x22 + 3108105x20 + 4686825x18 + 5311735x16 + 4457400x14 + 2704156x12 + 1144066x10 + 319770x8 + 54264x6 + 4845x4 + 171x2 + 1 \( 2^{36}\cdot 37^{34} \) $C_2\times C_{18}$ (as 36T2) $[130473]$ (GRH)
36.0.21809974230617285625493307131308780792777539584000000000000000000.1 x36 + 51x34 + 1129x32 + 14310x30 + 115592x28 + 628407x26 + 2373706x24 + 6356559x22 + 12218191x20 + 16953894x18 + 16964206x16 + 12133089x14 + 6090371x12 + 2080353x10 + 460449x8 + 61182x6 + 4335x4 + 135x2 + 1 \( 2^{36}\cdot 5^{18}\cdot 19^{32} \) $C_2\times C_{18}$ (as 36T2) $[81529]$ (GRH)
36.0.41216642617644769738384985747906299013992369570201489573102485504.1 x36 + 36x34 + 594x32 + 5952x30 + 40455x28 + 197316x26 + 712530x24 + 1937520x22 + 3996135x20 + 6249100x18 + 7354710x16 + 6418656x14 + 4056234x12 + 1790712x10 + 523260x8 + 93024x6 + 8721x4 + 324x2 + 1 \( 2^{72}\cdot 3^{90} \) $C_2\times C_{18}$ (as 36T2) $[180486]$ (GRH)
36.36.41216642617644769738384985747906299013992369570201489573102485504.1 x36 - 36x34 + 594x32 - 5952x30 + 40455x28 - 197316x26 + 712530x24 - 1937520x22 + 3996135x20 - 6249100x18 + 7354710x16 - 6418656x14 + 4056234x12 - 1790712x10 + 523260x8 - 93024x6 + 8721x4 - 324x2 + 1 \( 2^{72}\cdot 3^{90} \) $C_2\times C_{18}$ (as 36T2) Trivial (GRH)
36.0.41216642617644769738384985747906299013992369570201489573102485504.2 x36 + 54x32 + 1143x28 + 12006x24 + 65367x20 + 175878x16 + 201654x12 + 77760x8 + 3321x4 + 9 \( 2^{72}\cdot 3^{90} \) $C_2\times C_{18}$ (as 36T2) $[10298]$ (GRH)
36.36.44387950739803436916061690678602018428037077267652774810791015625.1 x36 - x35 - 55x34 + 54x33 + 1316x32 - 1262x31 - 18056x30 + 16794x29 + 157962x28 - 141168x27 - 929619x26 + 788451x25 + 3797668x24 - 3009217x23 - 10994500x22 + 7985283x21 + 22875412x20 - 14890129x19 - 34467709x18 + 19586929x17 + 37621312x16 - 18102232x15 - 29492311x14 + 11597407x13 + 16278597x12 - 5027655x11 - 6107727x10 + 1424143x9 + 1470387x8 - 252736x7 - 206783x6 + 26779x5 + 14445x4 - 1460x3 - 340x2 + 20x + 1 \( 3^{18}\cdot 5^{18}\cdot 19^{34} \) $C_2\times C_{18}$ (as 36T2) Trivial (GRH)
36.0.44387950739803436916061690678602018428037077267652774810791015625.1 x36 - x35 + 35x34 - 31x33 + 556x32 - 432x31 + 5314x30 - 3586x29 + 34162x28 - 19818x27 + 156466x26 - 77194x25 + 527433x24 - 218657x23 + 1332275x22 - 457647x21 + 2542252x20 - 711664x19 + 3665766x18 - 809761x17 + 3956632x16 - 539957x15 + 3063059x14 + 517817x13 + 1345047x12 + 2800770x11 - 276502x10 + 5237843x9 - 1026513x8 + 5476374x7 - 560238x6 + 2102034x5 + 267795x4 + 3047715x3 - 4108065x2 - 5418330x + 21850951 \( 3^{18}\cdot 5^{18}\cdot 19^{34} \) $C_2\times C_{18}$ (as 36T2) $[247608]$ (GRH)
36.0.44387950739803436916061690678602018428037077267652774810791015625.2 x36 - x35 - 19x34 + 20x33 + 208x32 - 228x31 - 1538x30 + 1766x29 + 8512x28 - 10278x27 - 36329x26 + 46607x25 + 122532x24 - 169139x23 - 326116x22 + 495255x21 + 679648x20 - 1174903x19 - 1062783x18 + 2247035x17 + 1113874x16 - 3183278x15 - 600913x14 + 942095x13 + 2074269x12 + 3200721x11 - 6904183x10 + 19867883x9 - 12157587x8 - 58512762x7 + 70408263x6 + 11551791x5 - 81902655x4 + 82074510x3 - 177270x2 - 87226170x + 87403801 \( 3^{18}\cdot 5^{18}\cdot 19^{34} \) $C_2\times C_{18}$ (as 36T2) n/a
36.0.44387950739803436916061690678602018428037077267652774810791015625.3 x36 - x35 - 3x34 + 7x33 + 5x32 - 33x31 + 13x30 + 119x29 - 171x28 - 305x27 + 989x26 + 231x25 - 4187x24 + 3263x23 + 13485x22 - 26537x21 - 27403x20 + 133551x19 - 23939x18 + 534204x17 - 438448x16 - 1698368x15 + 3452160x14 + 3341312x13 - 17149952x12 + 3784704x11 + 64815104x10 - 79953920x9 - 179306496x8 + 499122176x7 + 218103808x6 - 2214592512x5 + 1342177280x4 + 7516192768x3 - 12884901888x2 - 17179869184x + 68719476736 \( 3^{18}\cdot 5^{18}\cdot 19^{34} \) $C_2\times C_{18}$ (as 36T2) n/a
36.0.52488303469710461753453989107747724546083978878098845653195292921.1 x36 - x35 - 25x34 + 12x33 + 338x32 - 35x31 - 3596x30 + 75x29 + 31599x28 + 708x27 - 221058x26 - 33939x25 + 1281217x24 + 260669x23 - 6307141x22 - 1034028x21 + 25482307x20 + 5036015x19 - 82683121x18 - 21277922x17 + 219610804x16 + 36478832x15 - 460870720x14 - 25242848x13 + 716973312x12 + 105430656x11 - 784816896x10 - 223400960x9 + 631394304x8 + 37050368x7 - 296185856x6 + 80846848x5 + 88227840x4 - 13107200x3 - 3604480x2 - 655360x + 262144 \( 3^{18}\cdot 7^{18}\cdot 19^{32} \) $C_2\times C_{18}$ (as 36T2) $[2, 666]$ (GRH)
36.0.122742088752587853242976134017548025824688225088579999619212332041.1 x36 - 4693x27 + 22286393x18 + 1230241792x9 + 68719476736 \( 3^{90}\cdot 17^{18} \) $C_2\times C_{18}$ (as 36T2) n/a
36.36.141834577785145976449731181827603110001579056521289025332042530816.1 x36 - 36x34 + 593x32 - 5920x30 + 39992x28 - 193312x26 + 689479x24 - 1844392x22 + 3724921x20 - 5673268x18 + 6463399x16 - 5422832x14 + 3269436x12 - 1365584x10 + 374154x8 - 61776x6 + 5325x4 - 180x2 + 1 \( 2^{72}\cdot 19^{34} \) $C_2\times C_{18}$ (as 36T2) Trivial (GRH)
36.0.141834577785145976449731181827603110001579056521289025332042530816.1 x36 + 36x34 + 593x32 + 5920x30 + 39992x28 + 193312x26 + 689479x24 + 1844392x22 + 3724921x20 + 5673268x18 + 6463399x16 + 5422832x14 + 3269436x12 + 1365584x10 + 374154x8 + 61776x6 + 5325x4 + 180x2 + 1 \( 2^{72}\cdot 19^{34} \) $C_2\times C_{18}$ (as 36T2) $[171, 1026]$ (GRH)
36.0.141834577785145976449731181827603110001579056521289025332042530816.2 x36 + 57x32 + 1292x28 + 14839x24 + 91181x20 + 291327x16 + 436088x12 + 246202x8 + 33573x4 + 361 \( 2^{72}\cdot 19^{34} \) $C_2\times C_{18}$ (as 36T2) $[19, 1026]$ (GRH)
36.0.254220364621420587352541611206660801314202845184000000000000000000.1 x36 + 54x34 + 1269x32 + 17118x30 + 147510x28 + 857304x26 + 3468195x24 + 9962190x22 + 20569950x20 + 30703482x18 + 33080274x16 + 25472799x14 + 13732377x12 + 5001777x10 + 1161216x8 + 156168x6 + 10341x4 + 243x2 + 1 \( 2^{36}\cdot 3^{88}\cdot 5^{18} \) $C_2\times C_{18}$ (as 36T2) $[19, 12483]$ (GRH)
36.0.422379680368177798715623889905033676852479341516255339435483316489.1 x36 - x35 + 5x34 - 9x33 + 29x32 - 65x31 + 181x30 - 441x29 + 1165x28 - 2929x27 + 7589x26 - 19305x25 + 49661x24 - 126881x23 + 325525x22 - 833049x21 + 2135149x20 - 5467345x19 + 14007941x18 + 21869380x17 + 34162384x16 + 53315136x15 + 83334400x14 + 129926144x13 + 203411456x12 + 316293120x11 + 497352704x10 + 767819776x9 + 1221591040x8 + 1849688064x7 + 3036676096x6 + 4362076160x5 + 7784628224x4 + 9663676416x3 + 21474836480x2 + 17179869184x + 68719476736 \( 17^{18}\cdot 19^{34} \) $C_2\times C_{18}$ (as 36T2) n/a
36.0.580654212789242722070512622423229170767369878981703159664854695936.1 x36 - 34x34 + 676x32 - 9040x30 + 90624x28 - 699296x26 + 4279936x24 - 20814464x22 + 81078016x20 - 249758720x18 + 606287872x16 - 1124603904x14 + 1576677376x12 - 1557225472x10 + 1081884672x8 - 426049536x6 + 111083520x4 - 5898240x2 + 262144 \( 2^{54}\cdot 3^{18}\cdot 19^{32} \) $C_2\times C_{18}$ (as 36T2) n/a
36.0.580654212789242722070512622423229170767369878981703159664854695936.2 x36 + 34x34 + 676x32 + 9040x30 + 90624x28 + 699296x26 + 4279936x24 + 20814464x22 + 81078016x20 + 249758720x18 + 606287872x16 + 1124603904x14 + 1576677376x12 + 1557225472x10 + 1081884672x8 + 426049536x6 + 111083520x4 + 5898240x2 + 262144 \( 2^{54}\cdot 3^{18}\cdot 19^{32} \) $C_2\times C_{18}$ (as 36T2) n/a
36.36.794911346891760916131484470981274061649585725862903171539306640625.1 x36 - x35 - 52x34 + 47x33 + 1177x32 - 947x31 - 15301x30 + 10771x29 + 127184x28 - 76859x27 - 713805x26 + 363060x25 + 2791702x24 - 1171922x23 - 7758928x22 + 2637723x21 + 15506227x20 - 4188542x19 - 22401208x18 + 4709558x17 + 23361262x16 - 3730447x15 - 17429913x14 + 2049918x13 + 9135431x12 - 759461x11 - 3261522x10 + 180587x9 + 755073x8 - 24948x7 - 104688x6 + 1398x5 + 7575x4 + 75x3 - 216x2 - 9x + 1 \( 5^{18}\cdot 37^{34} \) $C_2\times C_{18}$ (as 36T2) Trivial (GRH)
36.0.908819719841676525092557848566442535650646971382385935623234726609.1 x36 - 2506x27 + 4326911x18 - 4894531250x9 + 3814697265625 \( 3^{90}\cdot 19^{18} \) $C_2\times C_{18}$ (as 36T2) n/a
36.0.2287983281592785286172874500859947211827825606656000000000000000000.1 x36 - 1953125x18 + 3814697265625 \( 2^{36}\cdot 3^{90}\cdot 5^{18} \) $C_2\times C_{18}$ (as 36T2) n/a
36.36.2287983281592785286172874500859947211827825606656000000000000000000.1 x36 - 54x34 + 1269x32 - 17118x30 + 147510x28 - 857304x26 + 3468195x24 - 9962190x22 + 20569950x20 - 30715038x18 + 33159726x16 - 25700409x14 + 14084001x12 - 5318379x10 + 1328724x8 - 206064x6 + 17901x4 - 729x2 + 9 \( 2^{36}\cdot 3^{90}\cdot 5^{18} \) $C_2\times C_{18}$ (as 36T2) Trivial (GRH)
36.0.2287983281592785286172874500859947211827825606656000000000000000000.2 x36 + 36x34 + 594x32 + 5952x30 + 40455x28 + 197316x26 + 712530x24 + 1937520x22 + 3996135x20 + 6243322x18 + 7250706x16 + 5638626x14 + 901446x12 - 5645574x10 - 9773136x8 - 7915284x6 - 3111399x4 - 467694x2 + 33373729 \( 2^{36}\cdot 3^{90}\cdot 5^{18} \) $C_2\times C_{18}$ (as 36T2) $[923742]$ (GRH)
36.0.2287983281592785286172874500859947211827825606656000000000000000000.3 x36 - 36x34 + 594x32 - 5952x30 + 40455x28 - 197316x26 + 712530x24 - 1937520x22 + 3996135x20 - 6254878x18 + 7458714x16 - 7198686x14 + 7211022x12 - 9226998x10 + 10819656x8 - 8101332x6 + 3128841x4 - 468342x2 + 33396841 \( 2^{36}\cdot 3^{90}\cdot 5^{18} \) $C_2\times C_{18}$ (as 36T2) $[1406]$ (GRH)
36.36.7873400697252840110803083874402469866192691789824000000000000000000.1 x36 - 57x34 + 1425x32 - 20634x30 + 192812x28 - 1228749x26 + 5515738x24 - 17801385x22 + 41855195x20 - 72233250x18 + 91675950x16 - 85215855x14 + 57368315x12 - 27413979x10 + 9002257x8 - 1929906x6 + 248007x4 - 16245x2 + 361 \( 2^{36}\cdot 5^{18}\cdot 19^{34} \) $C_2\times C_{18}$ (as 36T2) Trivial (GRH)
36.0.7873400697252840110803083874402469866192691789824000000000000000000.1 x36 - 5x34 + 25x32 - 125x30 + 625x28 - 3125x26 + 15625x24 - 78125x22 + 390625x20 - 1953125x18 + 9765625x16 - 48828125x14 + 244140625x12 - 1220703125x10 + 6103515625x8 - 30517578125x6 + 152587890625x4 - 762939453125x2 + 3814697265625 \( 2^{36}\cdot 5^{18}\cdot 19^{34} \) $C_2\times C_{18}$ (as 36T2) n/a
Next

Download all search results for