Learn more about

Further refine search

Results (displaying all 35 matches)

Label Polynomial Discriminant Galois group Class group
36.0.105284851424362376111761689319042885392000913033423744261.1 x36 - x + 1 \( 31\cdot 43\cdot 12231367\cdot 6457445387287894797679050738460435100440856551 \) $S_{36}$ (as 36T121279) Trivial (GRH)
36.2.107489866423070673503665262185869902088334798226294838011.1 x36 - x - 1 \( -\,17\cdot 4159\cdot 15199\cdot 100026406411403650496448740544371871003696683563 \) $S_{36}$ (as 36T121279) Trivial (GRH)
36.2.75763738453132956338091665017027760582529495524831238344488779776.1 x36 - 4x - 1 \( -\,2^{38}\cdot 17\cdot 16921\cdot 62537257\cdot 125823568620934883\cdot 121771536848320783132637 \) $S_{36}$ (as 36T121279) Trivial (GRH)
36.2.75763738559520315260260049996313475752456393740167855629859291136.1 x36 - 2x - 1 \( -\,2^{36}\cdot 1107843740390579573\cdot 995183220075414504960534046793920687 \) $S_{36}$ (as 36T121279) Trivial (GRH)
36.0.1751957170687571974959064742392556811120480245922780546043450753024.1 x36 - 4x + 4 \( 2^{36}\cdot 681344268953\cdot 37417695272833672552399153025918165137003853 \) $S_{36}$ (as 36T121279) n/a
36.2.1903484647593837887632151792769756811120480245922780546043450753024.1 x36 - 4x - 4 \( -\,2^{36}\cdot 13\cdot 3339894701599932097\cdot 637959938285900412315195937921119719 \) $S_{36}$ (as 36T121279) n/a
36.0.3579678079828276906254673009973713622240960491845561092086901506048.1 x36 - 2x + 2 \( 2^{36}\cdot 23\cdot 17333\cdot 80929\cdot 637798248256015152661\cdot 2531483256328229884262683 \) $S_{36}$ (as 36T121279) n/a
36.0.3655441818280307355091862386466361835807546983497394149490465959173.1 x36 - x + 2 \( 31\cdot 12007\cdot 9820727742903487361114248909819706880146653654984576603138669 \) $S_{36}$ (as 36T121279) Trivial (GRH)
36.2.3731205556734542818927760060350913622240960491845561092086901506048.1 x36 - 2x - 2 \( -\,2^{36}\cdot 37\cdot 107\cdot 166661887537\cdot 2230622560373\cdot 36891086274689302683126876377 \) $S_{36}$ (as 36T121279) Trivial (GRH)
36.2.165480461027767336071340669005604360977631424553295881459475150170005739.1 x36 - 3x + 1 \( -\,3^{36}\cdot 1009245277\cdot 922281289801\cdot 2118863507821\cdot 559008545458718777627 \) $S_{36}$ (as 36T121279) n/a
36.2.165480461027767548846058516438653976404582929466083361795186409888588011.1 x36 - 3x - 1 \( -\,3^{36}\cdot 11\cdot 29\cdot 257\cdot 214338235199542902517\cdot 62741961995394390431791960081 \) $S_{36}$ (as 36T121279) n/a
36.2.165484116469585723868562183938664331004729417970181467188422866930802923.1 x36 - 3x - 2 \( -\,3^{36}\cdot 37\cdot 3433127\cdot 8679596823955504716817139394077141218737118537 \) $S_{36}$ (as 36T121279) n/a
36.0.5157243484927624797653804823515167194702606710042370684685924613662400277.1 x36 - 3x + 3 \( 3^{36}\cdot 79\cdot 4852048602474904022430671\cdot 89639666521847355471107453093 \) $S_{36}$ (as 36T121279) n/a
36.0.5322723870191653786979548079693771174793713887052060306313255393691697152.1 x36 - 2x + 3 \( 2^{36}\cdot 2425914159548921\cdot 63944486179728703\cdot 499316090389426038604677401939 \) $S_{36}$ (as 36T121279) n/a
36.0.5322723945955392239009996916883147667441927453638551958146312797256150277.1 x36 - x + 3 \( 59\cdot 101\cdot 2223391\cdot 16677331837\cdot 24088965177104164177801061312686505034006261056110609 \) $S_{36}$ (as 36T121279) n/a
36.2.5322723945955392241215011915591445059345500320465568654480197990127244027.1 x36 - x - 3 \( -\,19\cdot 653\cdot 2459\cdot 120209\cdot 968147\cdot 20848939013869\cdot 71902896310749591361387580087781467888417 \) $S_{36}$ (as 36T121279) n/a
36.2.5488204406983159682571204008959425532084821064061749927940586173720994027.1 x36 - 3x - 3 \( -\,3^{36}\cdot 11\cdot 19\cdot 269\cdot 650379048290253172868790636077248233368721553744247 \) $S_{36}$ (as 36T121279) n/a
36.2.5206444458407017001002596703258211177247286377759039508154438907913098493952.1 x36 - 4x + 2 \( -\,2^{72}\cdot 53259629\cdot 41033659412477\cdot 504479084976558936591035866169939 \) $S_{36}$ (as 36T121279) n/a
36.2.5206444462062458819177619206925711187601886524247543606259832144370140708864.1 x36 - 4x + 1 \( -\,2^{73}\cdot 7102673273\cdot 3985673826279753431\cdot 19472780327095873042139059 \) $S_{36}$ (as 36T121279) n/a
36.2.5206444465717900637565416428440644247571913622240960491845561092086901506048.1 x36 - 4x - 2 \( -\,2^{72}\cdot 37\cdot 27388123490878123531\cdot 1087971580579067791998975496404029 \) $S_{36}$ (as 36T121279) n/a
36.2.5211767186008414211524119070265665008772993713887052060306313255393691697152.1 x36 - 4x - 3 \( -\,2^{73}\cdot 19\cdot 167\cdot 4051\cdot 68711027251\cdot 2054518857314051\cdot 304107012803321832397 \) $S_{36}$ (as 36T121279) n/a
36.0.31400006123879919634588974431669006237143297088209519146566572716898612412416.1 x36 - 2x + 4 \( 2^{34}\cdot 67\cdot 28429\cdot 40984105163\cdot 8661963725601919\cdot 2702972804144574274694220102910919 \) $S_{36}$ (as 36T121279) n/a
36.2.31400006123917801503815540909837277999737597088209519146566572716898612412416.1 x36 - 2x - 4 \( -\,2^{34}\cdot 13\cdot 3273349\cdot 189391561\cdot 549392567\cdot 1402461776089721\cdot 294333557649202292922185501 \) $S_{36}$ (as 36T121279) n/a
36.0.125599859015134414509366571983419846344593097245661066896644663536814420352789.1 x36 - 3x + 4 \( 3^{36}\cdot 29\cdot 59\cdot 153653238229\cdot 3182967872422304770096218500498606610363737311 \) $S_{36}$ (as 36T121279) n/a
36.2.12385118634041303101346661896997890464795404955644287080387584865093231201171875.1 x36 - 3x - 5 \( -\,3^{36}\cdot 5^{33}\cdot 11\cdot 23\cdot 11159\cdot 251060887191823589689036371744917 \) $S_{36}$ (as 36T121279) n/a
36.2.16043595669236637999751768693807458186428653007876700596873624073440841565290827.1 x36 - 5x + 2 \( -\,31\cdot 53\cdot 9764817814507996347992555504447631275976051739425867679168365230335265712289 \) $S_{36}$ (as 36T121279) n/a
36.2.16043595669240293441570156491028973119488623034974694013759209802388558326088011.1 x36 - 5x - 1 \( -\,4139\cdot 329191\cdot 500179\cdot 12220989457\cdot 13608912809\cdot 141547783713473436290473863221626513647199157 \) $S_{36}$ (as 36T121279) n/a
36.2.16169195693735888883846859134353061971437577109851779633951735925400522916446539.1 x36 - 5x - 4 \( -\,13\cdot 17\cdot 151\cdot 9967\cdot 63279135533\cdot 162455837353\cdot 1225081012382148058369\cdot 3860060136984109667520181667 \) $S_{36}$ (as 36T121279) n/a
36.0.34403107280007961719792406945283119575069642945432535887812264263629913330078125.1 x36 - 3x + 5 \( 3^{34}\cdot 5^{35}\cdot 29\cdot 1907\cdot 8246813\cdot 1554139575383264786145254107 \) $S_{36}$ (as 36T121279) n/a
36.0.77406991421388010185540162958322833088557691650000000000000000000000000000000000.1 x36 - 2x + 5 \( 2^{34}\cdot 5^{35}\cdot 113\cdot 75241877891\cdot 182084137822950813396208753196051 \) $S_{36}$ (as 36T121279) n/a
36.0.293584370016311823064329054862577619494792139878501058442634530365467071533203125.1 x36 - 5x + 5 \( 5^{35}\cdot 1123\cdot 89826198955428122286691490280844926090234321146644307 \) $S_{36}$ (as 36T121279) n/a
36.0.309622759241090054047079820959681819470043545600000000000000000000000000000000000.1 x36 - 4x + 5 \( 2^{73}\cdot 5^{35}\cdot 29717\cdot 334723738073\cdot 1132404441734588089 \) $S_{36}$ (as 36T121279) n/a
36.0.309627965685552116505899103863740169543607259248213566586491651833057403564453125.1 x36 - x + 5 \( 5^{35}\cdot 23893\cdot 80066285305661\cdot 42287377173362437\cdot 1315100416735689014293 \) $S_{36}$ (as 36T121279) n/a
36.2.309627965685552116505899106068755168251904651151786433413508348166942596435546875.1 x36 - x - 5 \( -\,5^{35}\cdot 53\cdot 140692752774092227\cdot 14267320948372844335518429862639500809 \) $S_{36}$ (as 36T121279) n/a
36.2.325671561354792409947469155069917718300719770521498941557365469634532928466796875.1 x36 - 5x - 5 \( -\,5^{35}\cdot 64549484221279\cdot 1733552138648987257579985558823093163846009 \) $S_{36}$ (as 36T121279) n/a


Download all search results for