| 35.1.1090750860448780079940372382912197992612324654525977339.1 |
x35 - x - 1 |
\( -\,19\cdot 43350623\cdot 10394177419177\cdot 127405006561314526913842526847311 \) |
$S_{35}$ (as 35T407) |
Trivial
(GRH)
|
| 35.1.403955037978023056104591172895949491439236366378374168898704123.1 |
x35 + 2x - 1 |
\( -\,256048319\cdot 1577651591526453474215509975271306082814925125043973317 \) |
$S_{35}$ (as 35T407) |
Trivial
(GRH)
|
| 35.1.2194316076337141133070751805670925124005717337380318127214034944.1 |
x35 + 4x - 4 |
\( -\,2^{34}\cdot 3\cdot 227\cdot 499\cdot 1637\cdot 252983\cdot 13122193474139\cdot 69164815108090306157070281 \) |
$S_{35}$ (as 35T407) |
n/a |
| 35.1.18133024539532207970634996343261673883948543963577136855073685504.1 |
x35 - 4x - 4 |
\( -\,2^{34}\cdot 2393\cdot 3027347\cdot 3480929\cdot 23465153\cdot 86816318477729\cdot 20545919111781857 \) |
$S_{35}$ (as 35T407) |
Trivial
(GRH)
|
| 35.1.18536979576407723527385438820205836941974271981788568427536842752.1 |
x35 - 2x - 2 |
\( -\,2^{34}\cdot 3\cdot 101\cdot 181\cdot 20265277861\cdot 970834838597032055518467053783192081261 \) |
$S_{35}$ (as 35T407) |
Trivial
(GRH)
|
| 35.1.18940934613271482445230512681138585949498689644445382058090430464.1 |
x35 - x - 2 |
\( -\,2^{35}\cdot 23\cdot 29\cdot 5408561\cdot 3295715551039421859593\cdot 46365427582714972609103 \) |
$S_{35}$ (as 35T407) |
Trivial
(GRH)
|
| 35.1.18940934613283239084135196970699114224965951053280074245089512671.1 |
x35 - x - 4 |
\( -\,21529\cdot 108949\cdot 6512477\cdot 1233879787294159\cdot 1004928692423983036960429614171257 \) |
$S_{35}$ (as 35T407) |
Trivial
(GRH)
|
| 35.1.19344889650158754640886323774094163058025728018211431572463157248.1 |
x35 + 2x - 2 |
\( -\,2^{34}\cdot 1126020777164885927974614534416129059276178480254685947 \) |
$S_{35}$ (as 35T407) |
n/a |
| 35.3.588202809606603357991576939265385316423362420920664750060928124579077.1 |
x35 - 3x - 1 |
\( 263\cdot 2236512584055526076013600529526179910354990193614694867151817964179 \) |
$S_{35}$ (as 35T407) |
n/a |
| 35.1.588202809606605563006575647562777219996229247937361083946120995672827.1 |
x35 + 3x - 1 |
\( -\,11\cdot 98621\cdot 1256737\cdot 431440197517624808800874835977068316565768413760949105541 \) |
$S_{35}$ (as 35T407) |
n/a |
| 35.1.588221750541217743738160429295378418209795834429012917003524560125952.1 |
x35 + 3x - 2 |
\( -\,2^{35}\cdot 67\cdot 997\cdot 10501\cdot 21885937\cdot 61024809499\cdot 18273386263227299987114447833747 \) |
$S_{35}$ (as 35T407) |
n/a |
| 35.1.16503911294196719772107370820655405607187654362035586369285275101691904.1 |
x35 + 4x - 2 |
\( -\,2^{34}\cdot 3\cdot 291647\cdot 188120963917\cdot 64268062741853\cdot 129806582432617\cdot 699615044068223 \) |
$S_{35}$ (as 35T407) |
n/a |
| 35.1.17798515082367555812689767342378048586357668277758722819366562109795923.1 |
x35 - 3x - 3 |
\( -\,3^{34}\cdot 953\cdot 6256153603608033049\cdot 179003204879700031928572902324811 \) |
$S_{35}$ (as 35T407) |
n/a |
| 35.1.18386717891974160261432204730423513843153413610877380181752144760352339.1 |
x35 - x - 3 |
\( -\,31\cdot 593119931999166460046200152594306898166239148737980005862972411624269 \) |
$S_{35}$ (as 35T407) |
n/a |
| 35.1.18974920701580764733687919929206211122777259946616748653373611230047827.1 |
x35 + 3x - 3 |
\( -\,3^{34}\cdot 13\cdot 241667\cdot 21805563631\cdot 7788124267751\cdot 2132536222168538736270533 \) |
$S_{35}$ (as 35T407) |
n/a |
| 35.3.13879789360537572101775820691899433521344817318471928136568916360522891264.1 |
x35 - 4x - 2 |
\( 2^{34}\cdot 19\cdot 168467557\cdot 252402204484836965139552299030470450770513914143787387 \) |
$S_{35}$ (as 35T407) |
n/a |
| 35.3.13879789379478506713956552276681166122543030885058419788401973764087344389.1 |
x35 - 4x - 1 |
\( 13\cdot 7589\cdot 20542855181\cdot 1539824338977817412998292597\cdot 4447571988100751615228352051061 \) |
$S_{35}$ (as 35T407) |
n/a |
| 35.1.13879789379478506716161567275389463514446603751885436484735858956958438139.1 |
x35 + 4x - 1 |
\( -\,3\cdot 11\cdot 313\cdot 2039\cdot 7735841\cdot 2351499104023\cdot 659569685611056889\cdot 54928069223700611994891513947 \) |
$S_{35}$ (as 35T407) |
n/a |
| 35.1.13898176097370480875332248619671106948349384782584115872305286447192813139.1 |
x35 + 4x - 3 |
\( -\,9138888871558869679\cdot 1520773071289113273336033518817821571533849586015139741 \) |
$S_{35}$ (as 35T407) |
n/a |
| 35.1.81350694719624930292093723702209697387163959235493567995447142106884210688.1 |
x35 - 2x - 4 |
\( -\,2^{66}\cdot 3\cdot 19661\cdot 769973\cdot 4451823287\cdot 5453072616450015712452596887160149 \) |
$S_{35}$ (as 35T407) |
n/a |
| 35.1.81350694719826907810531481480584918625636040764506432004552857893115789312.1 |
x35 + 2x - 4 |
\( -\,2^{66}\cdot 53\cdot 73\cdot 4799\cdot 29426707\cdot 2986177911580117\cdot 675732378059188256648497 \) |
$S_{35}$ (as 35T407) |
n/a |
| 35.1.325402190676094069600789911289295817944331790204165570987082996475439874048.1 |
x35 - 3x - 4 |
\( -\,2^{34}\cdot 1549\cdot 423786696769\cdot 86327107557848503\cdot 334237129377476731946563571596079 \) |
$S_{35}$ (as 35T407) |
n/a |
| 35.1.325402778878903676205262167004494600641611414050501310355554617941909569536.1 |
x35 + x - 4 |
\( -\,2^{34}\cdot 3\cdot 13\cdot 485664990084185617541963221117971430129078178121023737305397111 \) |
$S_{35}$ (as 35T407) |
n/a |
| 35.1.1368653637240265747064304367405255252659852182698564487509429454803466796875.1 |
x35 + 5x - 3 |
\( -\,5^{33}\cdot 1098074000209\cdot 10706605584650121566295636839261553663967 \) |
$S_{35}$ (as 35T407) |
n/a |
| 35.1.8554080636076923159265154808842970351415900000000000000000000000000000000000.1 |
x35 + 5x - 2 |
\( -\,2^{35}\cdot 5^{35}\cdot 29\cdot 37\cdot 4783\cdot 451109\cdot 36948068942212518669550297789 \) |
$S_{35}$ (as 35T407) |
n/a |
| 35.3.34216304157570859728287062807444109732236595432535887812264263629913330078125.1 |
x35 - 5x - 3 |
\( 5^{35}\cdot 47\cdot 2551\cdot 98056103052957570805338836406495840027884930777 \) |
$S_{35}$ (as 35T407) |
n/a |
| 35.3.34216322544269810767834052757203609643069300000000000000000000000000000000000.1 |
x35 - 5x - 2 |
\( 2^{35}\cdot 3\cdot 5^{35}\cdot 846499\cdot 134736613369772875367972684185898269 \) |
$S_{35}$ (as 35T407) |
n/a |
| 35.3.34216322544288751702446233488788391375670498213566586491651833057403564453125.1 |
x35 - 5x - 1 |
\( 3\cdot 5^{35}\cdot 10273\cdot 14843\cdot 25700581463661603040632563709900234916117529 \) |
$S_{35}$ (as 35T407) |
n/a |
| 35.1.34216322544288751702448438503787099673062401786433413508348166942596435546875.1 |
x35 + 5x - 1 |
\( -\,5^{35}\cdot 11\cdot 241663\cdot 1377785519387\cdot 12423383848143479\cdot 258379951197664711 \) |
$S_{35}$ (as 35T407) |
n/a |
| 35.1.34541725323167655378652586406653334756392050000000000000000000000000000000000.1 |
x35 + 5x - 4 |
\( -\,2^{34}\cdot 5^{35}\cdot 23\cdot 30036282889711004677089205571002899788167 \) |
$S_{35}$ (as 35T407) |
n/a |
| 35.1.67503056025035887328928296461168247843798462539995295810513198375701904296875.1 |
x35 - 5x - 5 |
\( -\,5^{35}\cdot 29\cdot 2243199001\cdot 214847929968602317\cdot 1659496377096759652722647 \) |
$S_{35}$ (as 35T407) |
n/a |
| 35.1.641743826769611737662801992390163070749936601445907160984263230763375229102339.1 |
x35 - x - 5 |
\( -\,137320571\cdot 4673326232889111258230946275268277691256735317870963127470997996093209 \) |
$S_{35}$ (as 35T407) |
n/a |
| 35.1.641743826769611737662802015903440881487168624274008163604974339999259048241411.1 |
x35 + x - 5 |
\( -\,3\cdot 29\cdot 83\cdot 14920870913449\cdot 5956212470733679448044090102244808708234433700708917011580159 \) |
$S_{35}$ (as 35T407) |
n/a |
| 35.1.641743827357814547269406464645878269532633881069753496723631702384841698797827.1 |
x35 + 3x - 5 |
\( -\,47\cdot 397\cdot 1877\cdot 119039\cdot 441804439\cdot 348409282976275989473259857871463942961658812748071188309 \) |
$S_{35}$ (as 35T407) |
n/a |
| 35.1.675960149313900489365249340143089721642919062859957662294618785381317138671875.1 |
x35 + 5x - 5 |
\( -\,5^{35}\cdot 1481\cdot 13004394089\cdot 2075469389711\cdot 5810445451732846110092217889 \) |
$S_{35}$ (as 35T407) |
n/a |