Learn more

Refine search


Results (37 matches)

  Download to        
Label Polynomial Discriminant Galois group Class group
33.1.127...537.1 x33 - x - 1 \( 461\cdot 37057\cdot 7472134207648223752469291758363939923217381 \) $S_{33}$ (as 33T162) trivial (GRH)
33.1.130...489.1 x33 + x - 1 \( 17\cdot 43\cdot 1579\cdot 2609\cdot 13153817\cdot 216865282965193\cdot 15199633537674804809 \) $S_{33}$ (as 33T162) trivial (GRH)
33.1.125...305.1 x33 + 2x - 1 \( 5\cdot 2510840719976680323086521337206272553373849285653050481261 \) $S_{33}$ (as 33T162) trivial (GRH)
33.1.529...264.1 x33 - 4x - 4 \( 2^{32}\cdot 677\cdot 4266637\cdot 48046836047629\cdot 888172284811267871458394629 \) $S_{33}$ (as 33T162) trivial (GRH)
33.1.541...056.1 x33 - 2x - 2 \( 2^{32}\cdot 17881556731651\cdot 7056826131348151479446323473239686411 \) $S_{33}$ (as 33T162) trivial (GRH)
33.1.554...872.1 x33 - x - 2 \( 2^{32}\cdot 31\cdot 491\cdot 35603\cdot 238248533303420450650042664615870752238639 \) $S_{33}$ (as 33T162) trivial (GRH)
33.1.554...392.1 x33 - x - 4 \( 2^{32}\cdot 1621\cdot 3527\cdot 195457\cdot 11716761181\cdot 14330054499223\cdot 688121128326241 \) $S_{33}$ (as 33T162) n/a
33.1.567...640.1 x33 + 2x - 2 \( 2^{32}\cdot 5\cdot 53\cdot 3229\cdot 6433737122028757573993\cdot 23983104676408544038373 \) $S_{33}$ (as 33T162) trivial (GRH)
33.1.579...432.1 x33 + 4x - 4 \( 2^{32}\cdot 7\cdot 127\cdot 361279\cdot 459803\cdot 149099734067\cdot 6129135169246811499255607 \) $S_{33}$ (as 33T162) trivial (GRH)
33.1.174...153.1 x33 - x - 3 \( 32159\cdot 1547725797949519945333\cdot 3511075445128887057511203662401094299 \) $S_{33}$ (as 33T162) n/a
33.3.812...935.1 x33 - 3x - 1 \( -\,3^{33}\cdot 5\cdot 40739\cdot 11781157\cdot 3137660461139\cdot 194099782564469344251877 \) $S_{33}$ (as 33T162) trivial (GRH)
33.1.812...961.1 x33 + 3x - 1 \( 3^{34}\cdot 647\cdot 52009\cdot 14477556462738066936816722835108959527303 \) $S_{33}$ (as 33T162) n/a
33.1.812...296.1 x33 + 3x - 2 \( 2^{32}\cdot 3^{34}\cdot 5273\cdot 13873073\cdot 79403245997\cdot 19528960698348533 \) $S_{33}$ (as 33T162) trivial (GRH)
33.1.231...985.1 x33 - 3x - 3 \( 3^{33}\cdot 5\cdot 7\cdot 29264269\cdot 40590873456269216446987174322351841903133 \) $S_{33}$ (as 33T162) n/a
33.1.239...641.1 x33 - 2x - 3 \( 131009\cdot 1826160785227642613801154452607784331628185921248176167258849 \) $S_{33}$ (as 33T162) trivial (GRH)
33.1.239...409.1 x33 + x - 3 \( 7\cdot 17\cdot 59\cdot 34075418154976741692969464276338838074532783688619316348157829 \) $S_{33}$ (as 33T162) n/a
33.1.247...881.1 x33 + 3x - 3 \( 3^{33}\cdot 251\cdot 6097463\cdot 19738007\cdot 1473045192123599817714547811290817 \) $S_{33}$ (as 33T162) trivial (GRH)
33.1.238...848.1 x33 + 2x - 4 \( 2^{62}\cdot 7\cdot 13\cdot 131\cdot 331\cdot 373\cdot 16487\cdot 339517\cdot 72016601\cdot 8704317240727202644261 \) $S_{33}$ (as 33T162) n/a
33.1.486...440.1 x33 - 3x - 4 \( 2^{64}\cdot 3^{33}\cdot 5\cdot 7\cdot 211\cdot 47701\cdot 56203340663\cdot 23939822997841 \) $S_{33}$ (as 33T162) n/a
33.3.107...016.1 x33 - 4x - 2 \( -\,2^{32}\cdot 131\cdot 1332938071\cdot 25239878589041\cdot 5697057818890456747980454141102531 \) $S_{33}$ (as 33T162) n/a
33.3.107...351.1 x33 - 4x - 1 \( -\,157\cdot 862680509293\cdot 8877052066229\cdot 395644289235529\cdot 226702188673068757097323811 \) $S_{33}$ (as 33T162) n/a
33.1.107...712.1 x33 + 4x - 2 \( 2^{32}\cdot 717559\cdot 45863269\cdot 561933804328655053279\cdot 1357723639278128039889733 \) $S_{33}$ (as 33T162) n/a
33.1.108...297.1 x33 + 4x - 3 \( 7\cdot 383\cdot 9151\cdot 4405305888814048278095373581053517274104732666158978723088087 \) $S_{33}$ (as 33T162) n/a
33.3.177...432.1 x33 - 5x - 2 \( -\,2^{32}\cdot 28938953909\cdot 1424437414184534000994590725571052163866999948163 \) $S_{33}$ (as 33T162) n/a
33.1.595...304.1 x33 - 2x - 4 \( 2^{62}\cdot 41\cdot 5227\cdot 495043\cdot 2489722643\cdot 103976867383\cdot 4701030158746705429 \) $S_{33}$ (as 33T162) n/a
33.1.102...432.1 x33 + 5x - 4 \( 2^{64}\cdot 163\cdot 181\cdot 50551\cdot 28444257707\cdot 1304516704756865886343705176787 \) $S_{33}$ (as 33T162) n/a
33.1.238...984.1 x33 + x - 4 \( 2^{64}\cdot 7\cdot 17\cdot 19\cdot 157\cdot 33211\cdot 277757\cdot 4264681\cdot 80479969\cdot 114878428009485623479 \) $S_{33}$ (as 33T162) n/a
33.1.425...712.1 x33 + 5x - 2 \( 2^{30}\cdot 41\cdot 179\cdot 1579\cdot 2236133\cdot 39308148498265324319\cdot 38891111153367554795380843499 \) $S_{33}$ (as 33T162) n/a
33.3.170...487.1 x33 - 5x - 1 \( -\,40857347\cdot 123238837\cdot 33790272568641220049426121100592716765978452363500500033 \) $S_{33}$ (as 33T162) n/a
33.1.170...513.1 x33 + 5x - 1 \( 59\cdot 107\cdot 113\cdot 167\cdot 9170594383\cdot 510233763264227\cdot 1295992890923813\cdot 235510051675084013415407 \) $S_{33}$ (as 33T162) n/a
33.1.170...433.1 x33 + 5x - 3 \( 1297\cdot 12431057\cdot 17435333\cdot 170510057517160450557111079\cdot 3549619313840451585263090411 \) $S_{33}$ (as 33T162) n/a
33.1.334...897.1 x33 + 3x - 5 \( 3^{33}\cdot 37\cdot 643\cdot 390353972345549\cdot 2624049677604259\cdot 2465544740666077701019 \) $S_{33}$ (as 33T162) n/a
33.1.283...625.1 x33 - 5x - 5 \( 5^{32}\cdot 20333\cdot 35554829\cdot 26184343821271\cdot 6434496458277638628370639 \) $S_{33}$ (as 33T162) n/a
33.1.300...177.1 x33 - 3x - 5 \( 3^{33}\cdot 79\cdot 263\cdot 465137788789\cdot 55954405270679204355252370860858804532583 \) $S_{33}$ (as 33T162) n/a
33.1.300...601.1 x33 + x - 5 \( 17\cdot 947963\cdot 2718169\cdot 899817429526243\cdot 49025681184056655667\cdot 1555626574856691502779379 \) $S_{33}$ (as 33T162) n/a
33.1.300...417.1 x33 + 2x - 5 \( 347\cdot 21709529\cdot 399043534574726038672262189398446701674184314276727689712708459 \) $S_{33}$ (as 33T162) n/a
33.1.317...625.1 x33 + 5x - 5 \( 5^{32}\cdot 271\cdot 5918259675491\cdot 101848657603787\cdot 835125266081452453199 \) $S_{33}$ (as 33T162) n/a
  Download to