Learn more about

Further refine search

Results (displaying matches 1-50 of 530) Next

Label Polynomial Discriminant Galois group Class group
32.0.4722366482869645213696000000000000000000000000.1 x32 - x24 + x16 - x8 + 1 \( 2^{96}\cdot 5^{24} \) $C_2\times C_4^2$ (as 32T36) $[5]$ (GRH)
32.0.794071845499378503449051136000000000000000000000000.1 x32 - 4x30 + 2x28 + 40x26 - 160x24 + 544x22 - 264x20 - 5440x18 + 21744x16 - 10880x14 - 1056x12 + 4352x10 - 2560x8 + 1280x6 + 128x4 - 512x2 + 256 \( 2^{88}\cdot 3^{16}\cdot 5^{24} \) $C_2\times C_4^2$ (as 32T36) $[5, 20]$ (GRH)
32.0.794071845499378503449051136000000000000000000000000.2 x32 + 4x30 + 2x28 - 40x26 - 160x24 - 544x22 - 264x20 + 5440x18 + 21744x16 + 10880x14 - 1056x12 - 4352x10 - 2560x8 - 1280x6 + 128x4 + 512x2 + 256 \( 2^{88}\cdot 3^{16}\cdot 5^{24} \) $C_2\times C_4^2$ (as 32T36) $[4, 8]$ (GRH)
32.0.1392709810786878646248924865118341505527496337890625.1 x32 - x31 + 2x30 - 13x29 + 20x28 - 18x27 + 134x26 - 237x25 + 228x24 - 1272x23 + 1343x22 - 1297x21 + 9166x20 - 10201x19 + 1484x18 - 39009x17 + 47769x16 + 118245x15 + 50069x14 + 29982x13 + 25190x12 + 81350x11 + 89951x10 + 32414x9 + 26164x8 + 15519x7 + 32913x6 + 37152x5 + 13527x4 + 6318x3 + 4374x2 + 8748x + 6561 \( 3^{16}\cdot 5^{24}\cdot 13^{24} \) $C_2\times C_4^2$ (as 32T36) $[104]$ (GRH)
32.0.138956997215838851269528412416000000000000000000000000.1 x32 + 3x30 - 9x28 - 85x26 - 114x24 - 1521x22 - 2090x20 + 22329x18 + 111717x16 - 44722x14 - 41235x12 + 33462x10 + 16051x8 + 13275x6 - 11826x4 - 2916x2 + 6561 \( 2^{32}\cdot 5^{24}\cdot 13^{24} \) $C_2\times C_4^2$ (as 32T36) $[4, 4, 4]$ (GRH)
32.32.203282392447840896882957090816000000000000000000000000.1 x32 - 32x30 + 464x28 - 4032x26 + 23401x24 - 95704x22 + 283612x20 - 616816x18 + 986442x16 - 1151648x14 + 965328x12 - 564928x10 + 220856x8 - 53696x6 + 7136x4 - 384x2 + 1 \( 2^{96}\cdot 3^{16}\cdot 5^{24} \) $C_2\times C_4^2$ (as 32T36) Trivial (GRH)
32.0.203282392447840896882957090816000000000000000000000000.1 x32 - 16x30 + 152x28 - 960x26 + 4525x24 - 16184x22 + 45376x20 - 98960x18 + 169224x16 - 220120x14 + 215964x12 - 146912x10 + 67325x8 - 13840x6 + 1988x4 - 48x2 + 1 \( 2^{96}\cdot 3^{16}\cdot 5^{24} \) $C_2\times C_4^2$ (as 32T36) $[2, 2, 20]$ (GRH)
32.0.203282392447840896882957090816000000000000000000000000.2 x32 - 8x30 + 44x28 - 208x26 + 911x24 - 2776x22 + 7272x20 - 17024x18 + 34257x16 - 47152x14 + 59688x12 - 65552x10 + 50831x8 - 3464x6 + 236x4 - 16x2 + 1 \( 2^{96}\cdot 3^{16}\cdot 5^{24} \) $C_2\times C_4^2$ (as 32T36) $[2, 2, 20]$ (GRH)
32.0.203282392447840896882957090816000000000000000000000000.3 x32 + 269x24 + 5886x16 + 1124x8 + 1 \( 2^{96}\cdot 3^{16}\cdot 5^{24} \) $C_2\times C_4^2$ (as 32T36) $[2, 10, 20]$ (GRH)
32.0.203282392447840896882957090816000000000000000000000000.4 x32 + 349x24 + 30126x16 + 274084x8 + 1 \( 2^{96}\cdot 3^{16}\cdot 5^{24} \) $C_2\times C_4^2$ (as 32T36) $[8, 16]$ (GRH)
32.0.203282392447840896882957090816000000000000000000000000.5 x32 + 8x30 + 44x28 + 208x26 + 911x24 + 2776x22 + 7272x20 + 17024x18 + 34257x16 + 47152x14 + 59688x12 + 65552x10 + 50831x8 + 3464x6 + 236x4 + 16x2 + 1 \( 2^{96}\cdot 3^{16}\cdot 5^{24} \) $C_2\times C_4^2$ (as 32T36) $[8, 80]$ (GRH)
32.0.203282392447840896882957090816000000000000000000000000.6 x32 + 16x30 + 152x28 + 960x26 + 4525x24 + 16184x22 + 45376x20 + 98960x18 + 169224x16 + 220120x14 + 215964x12 + 146912x10 + 67325x8 + 13840x6 + 1988x4 + 48x2 + 1 \( 2^{96}\cdot 3^{16}\cdot 5^{24} \) $C_2\times C_4^2$ (as 32T36) $[4, 8, 80]$ (GRH)
32.0.203282392447840896882957090816000000000000000000000000.7 x32 + 32x30 + 464x28 + 4032x26 + 23401x24 + 95704x22 + 283612x20 + 616816x18 + 986442x16 + 1151648x14 + 965328x12 + 564928x10 + 220856x8 + 53696x6 + 7136x4 + 384x2 + 1 \( 2^{96}\cdot 3^{16}\cdot 5^{24} \) $C_2\times C_4^2$ (as 32T36) $[40, 80]$ (GRH)
32.0.203282392447840896882957090816000000000000000000000000.9 x32 - 81x24 + 6561x16 - 531441x8 + 43046721 \( 2^{96}\cdot 3^{16}\cdot 5^{24} \) $C_2\times C_4^2$ (as 32T36) n/a
32.0.870952144140052907613964449886024608671665191650390625.1 x32 - x31 - 6x30 + 17x29 - 15x28 + 75x27 + 311x26 - 1476x25 + 111x24 + 8701x23 + 9977x22 - 19105x21 - 16109x20 - 113360x19 - 246837x18 + 284709x17 + 1584805x16 - 284709x15 - 246837x14 + 113360x13 - 16109x12 + 19105x11 + 9977x10 - 8701x9 + 111x8 + 1476x7 + 311x6 - 75x5 - 15x4 - 17x3 - 6x2 + x + 1 \( 3^{16}\cdot 5^{24}\cdot 17^{24} \) $C_2\times C_4^2$ (as 32T36) $[5, 60]$ (GRH)
32.0.43005107648088506255732033296018914516707307660871991296.1 x32 - 3x24 + 117486x16 + 35572x8 + 6561 \( 2^{96}\cdot 13^{24} \) $C_2\times C_4^2$ (as 32T36) $[5, 5, 15]$ (GRH)
32.0.86898859856540647588737053982976000000000000000000000000.1 x32 - 13x30 + 129x28 - 1170x26 + 10218x24 - 43485x22 + 171666x20 - 623922x18 + 1799433x16 - 623922x14 + 171666x12 - 43485x10 + 10218x8 - 1170x6 + 129x4 - 13x2 + 1 \( 2^{32}\cdot 5^{24}\cdot 17^{24} \) $C_2\times C_4^2$ (as 32T36) $[4, 4, 20]$ (GRH)
32.0.613039365036788240314949190025216000000000000000000000000.1 x32 - 4x31 - 6x30 + 60x29 - 13x28 - 84x27 - 1364x26 + 2488x25 + 18183x24 - 51984x23 + 1408x22 + 117740x21 - 43153x20 + 543956x19 - 2324538x18 + 1957436x17 + 5433691x16 - 12655248x15 + 12201456x14 - 3905608x13 - 4743542x12 + 5679776x11 - 794184x10 - 3851152x9 + 4403596x8 - 1826272x7 - 340368x6 + 838880x5 - 297528x4 - 219520x3 + 285376x2 - 153664x + 38416 \( 2^{88}\cdot 5^{24}\cdot 7^{16} \) $C_2\times C_4^2$ (as 32T36) $[680]$ (GRH)
32.0.613039365036788240314949190025216000000000000000000000000.2 x32 - 16x31 + 160x30 - 1160x29 + 6756x28 - 32872x27 + 137688x26 - 504816x25 + 1639376x24 - 4749552x23 + 12315372x22 - 28585976x21 + 59189458x20 - 108563512x19 + 174237344x18 - 239583744x17 + 271203819x16 - 229422992x15 + 95660524x14 + 97892432x13 - 263767222x12 + 302963088x11 - 176472000x10 - 53416448x9 + 268061612x8 - 376049408x7 + 358649568x6 - 258848640x5 + 145683560x4 - 64335936x3 + 22597024x2 - 5903488x + 1225456 \( 2^{88}\cdot 5^{24}\cdot 7^{16} \) $C_2\times C_4^2$ (as 32T36) $[2, 8, 40]$ (GRH)
32.0.1075199861227118411720654551127625657377302646636962890625.1 x32 - 2x31 - 8x30 + 14x29 + 63x28 - 486x27 + 387x26 + 2813x25 - 1932x24 - 13702x23 + 47407x22 - 62094x21 - 62330x20 + 584480x19 - 1121097x18 - 487441x17 + 5274231x16 - 6441701x15 + 4479186x14 + 4910425x13 + 73936x12 - 31103793x11 + 29606989x10 - 37188866x9 - 1032078x8 + 18427375x7 + 9826086x6 + 38717700x5 - 4091466x4 + 4426189x3 + 7865200x2 + 5508449x + 7890481 \( 5^{24}\cdot 7^{16}\cdot 13^{24} \) $C_2\times C_4^2$ (as 32T36) $[20, 40]$ (GRH)
32.0.9106685769537214956799814036094976000000000000000000000000.1 x32 - 2x31 - 33x30 + 76x29 + 465x28 - 1140x27 - 3949x26 + 9520x25 + 27148x24 - 63352x23 - 153033x22 + 416024x21 + 670872x20 - 1996144x19 - 1980711x18 + 5298792x17 + 2436831x16 - 2098242x15 + 3553038x14 - 34901464x13 - 2899755x12 + 137098280x11 - 30870498x10 - 233530804x9 + 131454091x8 + 208696342x7 - 97288993x6 - 152351964x5 + 125824932x4 + 63301378x3 - 47686656x2 - 37413980x + 20321401 \( 2^{48}\cdot 5^{24}\cdot 13^{24} \) $C_2\times C_4^2$ (as 32T36) $[2, 340]$ (GRH)
32.0.9106685769537214956799814036094976000000000000000000000000.2 x32 - 2x31 - 9x30 + 36x29 + 21x28 + 332x27 - 741x26 - 3920x25 + 11736x24 + 19320x23 - 32711x22 - 80556x21 + 191742x20 - 575216x19 - 386025x18 + 615296x17 + 4068117x16 - 2313570x15 + 3473250x14 - 10470992x13 + 7294861x12 - 5443884x11 + 13451220x10 - 7283844x9 - 5568993x8 + 3806838x7 + 18148455x6 + 1679616x5 + 9710280x4 - 36728478x3 + 8503056x2 - 19131876x + 43046721 \( 2^{48}\cdot 5^{24}\cdot 13^{24} \) $C_2\times C_4^2$ (as 32T36) $[4, 120]$ (GRH)
32.0.26893894496165171048841611301109623910839789254478351302656.1 x32 + 5393x24 + 1581856x16 + 5393x8 + 1 \( 2^{96}\cdot 17^{24} \) $C_2\times C_4^2$ (as 32T36) $[4, 4, 4, 52]$ (GRH)
32.32.156938077449417789520626992646455296000000000000000000000000.1 x32 - 64x30 + 1856x28 - 32256x26 + 374431x24 - 3063248x22 + 18166288x20 - 79134848x18 + 253925217x16 - 596716576x14 + 1012551072x12 - 1211673344x10 + 986220191x8 - 516827632x6 + 159875504x4 - 25087872x2 + 1442401 \( 2^{96}\cdot 5^{24}\cdot 7^{16} \) $C_2\times C_4^2$ (as 32T36) Trivial (GRH)
32.0.156938077449417789520626992646455296000000000000000000000000.1 x32 - 16x30 + 176x28 - 1664x26 + 14591x24 - 88112x22 + 455328x20 - 2102272x18 + 8473857x16 - 25593824x14 + 70660512x12 - 165613696x10 + 264513791x8 - 2076688x6 + 16304x4 - 128x2 + 1 \( 2^{96}\cdot 5^{24}\cdot 7^{16} \) $C_2\times C_4^2$ (as 32T36) n/a
32.0.156938077449417789520626992646455296000000000000000000000000.2 x32 + 4564x24 + 297166x16 + 211309x8 + 1 \( 2^{96}\cdot 5^{24}\cdot 7^{16} \) $C_2\times C_4^2$ (as 32T36) $[80, 80]$ (GRH)
32.0.156938077449417789520626992646455296000000000000000000000000.3 x32 + 16x30 + 176x28 + 1664x26 + 14591x24 + 88112x22 + 455328x20 + 2102272x18 + 8473857x16 + 25593824x14 + 70660512x12 + 165613696x10 + 264513791x8 + 2076688x6 + 16304x4 + 128x2 + 1 \( 2^{96}\cdot 5^{24}\cdot 7^{16} \) $C_2\times C_4^2$ (as 32T36) n/a
32.0.156938077449417789520626992646455296000000000000000000000000.4 x32 - 2401x24 + 5764801x16 - 13841287201x8 + 33232930569601 \( 2^{96}\cdot 5^{24}\cdot 7^{16} \) $C_2\times C_4^2$ (as 32T36) n/a
32.0.156938077449417789520626992646455296000000000000000000000000.5 x32 - 16x31 + 184x30 - 1520x29 + 10332x28 - 58576x27 + 287336x26 - 1231568x25 + 4678388x24 - 15845336x23 + 48150868x22 - 131698920x21 + 325052602x20 - 724763816x19 + 1460398932x18 - 2657926856x17 + 4363838181x16 - 6450379432x15 + 8560966476x14 - 10166839032x13 + 10757915718x12 - 10090253496x11 + 8336518556x10 - 6020922808x9 + 3765841276x8 - 2015958408x7 + 909882172x6 - 339412280x5 + 101809462x4 - 23591480x3 + 3962076x2 - 429016x + 22481 \( 2^{96}\cdot 5^{24}\cdot 7^{16} \) $C_2\times C_4^2$ (as 32T36) $[2, 10, 40]$ (GRH)
32.0.156938077449417789520626992646455296000000000000000000000000.6 x32 + 48x30 + 1128x28 + 16800x26 + 175155x24 + 1339752x22 + 7694204x20 + 33445200x18 + 109690049x16 + 267441600x14 + 471188096x12 + 570415104x10 + 436417280x8 + 180264960x6 + 39043072x4 + 2359296x2 + 65536 \( 2^{96}\cdot 5^{24}\cdot 7^{16} \) $C_2\times C_4^2$ (as 32T36) $[2, 4, 80, 1360]$ (GRH)
32.0.156938077449417789520626992646455296000000000000000000000000.7 x32 + 64x30 + 1856x28 + 32256x26 + 374431x24 + 3063248x22 + 18166288x20 + 79134848x18 + 253925217x16 + 596716576x14 + 1012551072x12 + 1211673344x10 + 986220191x8 + 516827632x6 + 159875504x4 + 25087872x2 + 1442401 \( 2^{96}\cdot 5^{24}\cdot 7^{16} \) $C_2\times C_4^2$ (as 32T36) $[80, 1360]$ (GRH)
32.0.156938077449417789520626992646455296000000000000000000000000.9 x32 + 5599x24 + 6799201x16 + 2232620239x8 + 214358881 \( 2^{96}\cdot 5^{24}\cdot 7^{16} \) $C_2\times C_4^2$ (as 32T36) n/a
32.0.321197479890852368431467961209258857295274794101715087890625.1 x32 - x31 + 4x30 + 29x29 - 26x28 - 158x27 + 958x26 - 1873x25 - 3930x24 + 19174x23 + 13885x22 - 135703x21 + 616564x20 + 347291x19 - 2094690x18 + 5123635x17 + 11338251x16 - 57696127x15 + 72973719x14 + 52874360x13 - 282513946x12 + 326655828x11 - 79724373x10 - 319900184x9 + 481110280x8 - 1973323893x7 + 2730384303x6 + 4118821508x5 - 19357441493x4 + 22771781534x3 + 13619301788x2 - 68096508940x + 78310985281 \( 3^{16}\cdot 5^{24}\cdot 29^{24} \) $C_2\times C_4^2$ (as 32T36) $[2, 2, 2, 2, 2, 312]$ (GRH)
32.0.672392495020735742667824195375358053817672789096832275390625.1 x32 - 2x31 + 8x30 - 12x29 + 4x28 - 8x27 - 407x26 + 822x25 - 4256x24 + 8592x23 - 23076x22 + 41636x21 + 75369x20 - 285314x19 + 2273432x18 - 2941856x17 + 11001816x16 - 11616776x15 - 28234359x14 + 90363958x13 - 48019048x12 - 73453252x11 + 185367884x10 - 248528948x9 + 295991545x8 + 337841718x7 - 253102672x6 - 817676696x5 + 178038704x4 + 2751530272x3 - 1913391360x2 - 3503287424x + 5158686976 \( 5^{24}\cdot 7^{16}\cdot 17^{24} \) $C_2\times C_4^2$ (as 32T36) $[5, 740]$ (GRH)
32.0.847622907049404564614012839370162176000000000000000000000000.1 x32 - 4x31 - 10x30 + 80x29 + 33x28 - 260x27 - 2622x26 + 5068x25 + 43750x24 - 119600x23 - 78600x22 + 434440x21 + 271699x20 + 1567840x19 - 11212032x18 + 9556052x17 + 39761917x16 - 86346268x15 + 74184448x14 - 11220832x13 - 58075371x12 + 112078936x11 - 94903292x10 + 12703888x9 + 55508750x8 - 58142980x7 + 41285982x6 - 24740140x5 + 13978351x4 - 7703344x3 + 3615186x2 - 1314036x + 279841 \( 2^{88}\cdot 5^{24}\cdot 11^{16} \) $C_2\times C_4^2$ (as 32T36) $[3480]$ (GRH)
32.0.847622907049404564614012839370162176000000000000000000000000.2 x32 - 16x31 + 176x30 - 1400x29 + 9140x28 - 50008x27 + 237760x26 - 993304x25 + 3698828x24 - 12348736x23 + 37160956x22 - 100999328x21 + 248067450x20 - 550035696x19 + 1098447236x18 - 1969257808x17 + 3158187595x16 - 4516634096x15 + 5769439004x14 - 6655144784x13 + 7182394274x12 - 7714898672x11 + 8765771372x10 - 10407112256x9 + 11993265010x8 - 12412466704x7 + 10863979076x6 - 7670495384x5 + 4079279422x4 - 1470536872x3 + 246059100x2 + 34978664x + 6872111 \( 2^{88}\cdot 5^{24}\cdot 11^{16} \) $C_2\times C_4^2$ (as 32T36) $[3, 15, 120]$ (GRH)
32.0.1486632154491018526083574799564592499515123426914215087890625.1 x32 - 2x31 - 12x30 + 24x29 + 117x28 - 778x27 + 111x26 + 6853x25 - 2856x24 - 42162x23 + 99151x22 - 65208x21 - 232848x20 + 2546494x19 - 5738943x18 - 2749375x17 + 35958729x16 - 50339403x15 + 14501232x14 + 132433057x13 - 171658424x12 - 183754935x11 + 484557723x10 - 773200890x9 + 39044106x8 + 453150045x7 + 552237912x6 + 391599846x5 + 581698260x4 + 324119961x3 + 167935356x2 + 81310473x + 43046721 \( 5^{24}\cdot 11^{16}\cdot 13^{24} \) $C_2\times C_4^2$ (as 32T36) n/a
32.0.5695003679558247880375471569828315136000000000000000000000000.1 x32 - 2x31 + 23x30 - 58x29 + 423x28 - 250x27 + 5494x26 - 2162x25 + 75954x24 - 68274x23 + 419597x22 - 421674x21 + 1817292x20 - 1250168x19 + 6110462x18 - 3815316x17 + 18328695x16 - 12077360x15 + 38788398x14 - 20336812x13 + 67449232x12 - 4658378x11 + 73270895x10 + 4506654x9 + 68825998x8 + 16469642x7 + 66179698x6 + 21666686x5 + 47580595x4 + 23875530x3 + 17135213x2 + 5606442x + 4879681 \( 2^{48}\cdot 5^{24}\cdot 17^{24} \) $C_2\times C_4^2$ (as 32T36) $[2, 30, 390]$ (GRH)
32.0.5695003679558247880375471569828315136000000000000000000000000.2 x32 - 2x31 + 47x30 - 98x29 + 1051x28 - 1874x27 + 13646x26 - 22782x25 + 106186x24 - 207118x23 + 395263x22 - 1233434x21 + 77200x20 - 3581160x19 - 3693434x18 + 3621240x17 - 2344899x16 + 71151504x15 + 67877410x14 + 270739944x13 + 336933634x12 + 513143686x11 + 875287303x10 + 431086826x9 + 1519072624x8 - 146741502x7 + 1859984222x6 - 671119730x5 + 1558431493x4 - 566599754x3 + 801634283x2 - 165908186x + 191844571 \( 2^{48}\cdot 5^{24}\cdot 17^{24} \) $C_2\times C_4^2$ (as 32T36) $[2, 8, 120]$ (GRH)
32.32.5981643090147991811559885370844487936000000000000000000000000.1 x32 - 80x30 + 2752x28 - 54104x26 + 680298x24 - 5793716x22 + 34483830x20 - 145742210x18 + 439508851x16 - 941151044x14 + 1409169330x12 - 1431708442x10 + 934419815x8 - 352066990x6 + 59165083x4 - 945954x2 + 3721 \( 2^{32}\cdot 3^{16}\cdot 5^{24}\cdot 13^{24} \) $C_2\times C_4^2$ (as 32T36) Trivial (GRH)
32.0.5981643090147991811559885370844487936000000000000000000000000.2 x32 - 23x30 + 420x28 - 7300x26 + 125492x24 - 672841x22 + 2866035x20 - 10960760x18 + 37477864x16 - 82519608x14 + 169153947x12 - 306502677x10 + 404862948x8 - 26009748x6 + 1670868x4 - 107163x2 + 6561 \( 2^{32}\cdot 3^{16}\cdot 5^{24}\cdot 13^{24} \) $C_2\times C_4^2$ (as 32T36) $[2, 8, 8, 208]$ (GRH)
32.0.5981643090147991811559885370844487936000000000000000000000000.3 x32 + 16x30 + 186x28 + 1943x26 + 19451x24 + 104078x22 + 471045x20 + 1926010x18 + 6722737x16 + 12787305x14 + 22756410x12 + 36535239x10 + 43606026x8 + 4951611x6 + 562059x4 + 63423x2 + 6561 \( 2^{32}\cdot 3^{16}\cdot 5^{24}\cdot 13^{24} \) $C_2\times C_4^2$ (as 32T36) $[2, 2, 2, 8, 1040]$ (GRH)
32.0.5981643090147991811559885370844487936000000000000000000000000.4 x32 + 77x30 + 2550x28 + 47810x26 + 563517x24 + 4400894x22 + 23500815x20 + 87672250x18 + 231662344x16 + 436175237x14 + 583652697x12 + 547864098x10 + 350875173x8 + 145473897x6 + 35183233x4 + 3838047x2 + 32041 \( 2^{32}\cdot 3^{16}\cdot 5^{24}\cdot 13^{24} \) $C_2\times C_4^2$ (as 32T36) $[8, 8, 8, 8, 80]$ (GRH)
32.0.5981643090147991811559885370844487936000000000000000000000000.5 x32 + 36x30 + 812x28 + 11180x26 + 111660x24 + 792804x22 + 4239806x20 + 16368060x18 + 47307204x16 + 95642940x14 + 139391684x12 + 125633292x10 + 81082665x8 + 31866640x6 + 8588288x4 + 872448x2 + 65536 \( 2^{32}\cdot 3^{16}\cdot 5^{24}\cdot 13^{24} \) $C_2\times C_4^2$ (as 32T36) $[2, 2, 2, 8, 8, 1040]$ (GRH)
32.0.5981643090147991811559885370844487936000000000000000000000000.6 x32 - 4x31 - 38x30 + 118x29 + 790x28 - 1842x27 - 9626x26 + 20072x25 + 70123x24 - 176218x23 - 293732x22 + 1284032x21 + 219366x20 - 6794274x19 + 6681279x18 + 20297534x17 - 49420166x16 - 4100710x15 + 177618004x14 - 219341242x13 - 314737755x12 + 897468480x11 + 58509126x10 - 1745550454x9 + 821617744x8 + 1855727336x7 - 1690380687x6 - 1037802612x5 + 2331262742x4 - 1529717908x3 + 508183759x2 - 86254878x + 6599581 \( 2^{32}\cdot 3^{16}\cdot 5^{24}\cdot 13^{24} \) $C_2\times C_4^2$ (as 32T36) $[2, 8, 8, 80]$ (GRH)
32.0.5981643090147991811559885370844487936000000000000000000000000.7 x32 - 8x31 + 16x30 + 74x29 - 389x28 + 378x27 + 1774x26 - 5330x25 + 5491x24 + 5560x23 - 20336x22 + 78166x21 - 98673x20 + 132756x19 + 496440x18 - 937946x17 + 2465482x16 + 243430x15 - 929450x14 + 10131622x13 - 10518084x12 - 2351046x11 + 31876680x10 - 58786556x9 + 42474577x8 + 118490302x7 - 52870050x6 - 66043536x5 + 88122560x4 - 23248712x3 + 53648656x2 - 6471264x + 13791376 \( 2^{32}\cdot 3^{16}\cdot 5^{24}\cdot 13^{24} \) $C_2\times C_4^2$ (as 32T36) $[8, 8, 8, 208]$ (GRH)
32.0.5981643090147991811559885370844487936000000000000000000000000.8 x32 + 22x30 + 287x28 + 1532x26 + 2375x24 + 5030x22 + 60471x20 - 319026x18 - 1017614x16 + 6913746x14 + 13189776x12 - 111387544x10 - 54425047x8 + 377006912x6 + 1068434336x4 - 91362752x2 + 251412736 \( 2^{32}\cdot 3^{16}\cdot 5^{24}\cdot 13^{24} \) $C_2\times C_4^2$ (as 32T36) $[2, 2, 2, 2, 2, 520]$ (GRH)
32.0.5981643090147991811559885370844487936000000000000000000000000.9 x32 - 2x31 - 49x30 + 106x29 + 1076x28 - 2358x27 - 14536x26 + 30390x25 + 143331x24 - 277890x23 - 1101976x22 + 2047834x21 + 6700777x20 - 11544686x19 - 31683220x18 + 41887806x17 + 112998102x16 - 58409400x15 - 309446035x14 - 223742052x13 + 756846581x12 + 1385729356x11 - 1693247590x10 - 2987674244x9 + 2900961157x8 + 2487107298x7 - 1842800025x6 - 102727494x5 + 449157015x4 - 1413093708x3 + 372745611x2 - 302934816x + 531854181 \( 2^{32}\cdot 3^{16}\cdot 5^{24}\cdot 13^{24} \) $C_2\times C_4^2$ (as 32T36) $[2, 2, 2, 8, 80]$ (GRH)
32.0.5981643090147991811559885370844487936000000000000000000000000.10 x32 - 13x30 + 13x28 + 1690x26 - 21970x24 + 261443x22 - 259246x20 - 33987590x18 + 441810109x16 - 441838670x14 - 43812574x12 + 574390271x10 - 627485170x8 + 627485170x6 + 62748517x4 - 815730721x2 + 815730721 \( 2^{32}\cdot 3^{16}\cdot 5^{24}\cdot 13^{24} \) $C_2\times C_4^2$ (as 32T36) n/a
32.0.7231362775399344187879888625220455562201364498198121976692736.1 x32 - 4x31 - 30x30 + 88x29 + 531x28 - 1028x27 - 5254x26 + 7696x25 + 29657x24 - 43172x23 - 106514x22 + 247944x21 + 198866x20 - 1131864x19 + 508272x18 + 1288480x17 - 2969721x16 + 12413912x15 + 372598x14 - 68988532x13 + 48726322x12 + 138776892x11 - 154416048x10 - 119345528x9 + 162618454x8 + 101306868x7 - 76133580x6 - 190278160x5 + 211310100x4 - 84510352x3 + 27524944x2 - 6403360x + 796849 \( 2^{88}\cdot 3^{16}\cdot 13^{24} \) $C_2\times C_4^2$ (as 32T36) $[15, 120]$ (GRH)
Next

Download all search results for