Learn more about

Further refine search

Results (displaying matches 1-50 of 106) Next

Label Polynomial Discriminant Galois group Class group
27.27.7977212169716289044333767743376433611324896529.1 x27 - x26 - 42x25 + 37x24 + 728x23 - 564x22 - 6817x21 + 4664x20 + 37948x19 - 23103x18 - 130429x17 + 71289x16 + 279661x15 - 138143x14 - 372684x13 + 166778x12 + 305327x11 - 124486x10 - 150120x9 + 56020x8 + 42107x7 - 14253x6 - 6122x5 + 1790x4 + 395x3 - 85x2 - 10x + 1 \( 7^{18}\cdot 19^{24} \) $C_3\times C_9$ (as 27T2) Trivial (GRH)
27.27.50323116815004832630295337440131512593194174521.1 x27 - 45x25 + 837x23 - 8430x21 + 50652x19 - 193x18 - 188811x17 + 2934x16 + 441720x15 - 15822x14 - 646731x13 + 37506x12 + 585063x11 - 42453x10 - 319331x9 + 24462x8 + 99963x7 - 7245x6 - 16119x5 + 1080x4 + 1059x3 - 81x2 - 18x + 1 \( 3^{66}\cdot 7^{18} \) $C_3\times C_9$ (as 27T2) Trivial (GRH)
27.27.735278035529026786878794063569162978753987707441.1 x27 - 51x25 - 4x24 + 1080x23 + 156x22 - 12356x21 - 2448x20 + 83283x19 + 19984x18 - 339003x17 - 91596x16 + 825846x15 + 238428x14 - 1168977x13 - 344712x12 + 930681x11 + 259620x10 - 414755x9 - 102465x8 + 101628x7 + 20920x6 - 12933x5 - 2085x4 + 755x3 + 90x2 - 15x - 1 \( 3^{36}\cdot 19^{24} \) $C_3\times C_9$ (as 27T2) Trivial (GRH)
27.27.550892378962365588304561118053988796799287710804809.1 x27 - 6x26 - 47x25 + 302x24 + 943x23 - 6448x22 - 10567x21 + 76481x20 + 71695x19 - 556066x18 - 291044x17 + 2587104x16 + 603975x15 - 7811439x14 - 35156x13 + 15161145x12 - 2848142x11 - 18230502x10 + 6439289x9 + 12558384x8 - 6282221x7 - 4210683x6 + 2778704x5 + 421825x4 - 457387x3 + 20126x2 + 21522x - 2699 \( 13^{18}\cdot 19^{24} \) $C_3\times C_9$ (as 27T2) Trivial (GRH)
27.27.3475226802198116057554377769989579566636047832552241.1 x27 - 9x26 - 27x25 + 420x24 + 9x23 - 8244x22 + 7758x21 + 88713x20 - 125694x19 - 570907x18 + 991197x17 + 2239173x16 - 4595436x15 - 5142816x14 + 13108698x13 + 5797086x12 - 22773501x11 - 112752x10 + 22776726x9 - 6585183x8 - 11690658x7 + 5812863x6 + 2561958x5 - 1837044x4 - 142095x3 + 213804x2 - 7074x - 7019 \( 3^{66}\cdot 13^{18} \) $C_3\times C_9$ (as 27T2) Trivial (GRH)
27.27.70567721948812723604880306782225092911730957083793489.1 x27 - 6x26 - 53x25 + 366x24 + 982x23 - 8844x22 - 6757x21 + 112446x20 - 14683x19 - 834075x18 + 521672x17 + 3777786x16 - 3504440x15 - 10646520x14 + 12070299x13 + 18475792x12 - 24076806x11 - 18615256x10 + 28010042x9 + 9025037x8 - 17745073x7 - 453885x6 + 4979339x5 - 862152x4 - 251138x3 + 61524x2 - 1124x - 223 \( 7^{18}\cdot 37^{24} \) $C_3\times C_9$ (as 27T2) Trivial (GRH)
27.27.3217863581710817038235175421508758764893959268723195889.1 x27 - 9x26 - 45x25 + 636x24 + 27x23 - 17460x22 + 31872x21 + 229473x20 - 738450x19 - 1345159x18 + 7506369x17 + 647631x16 - 38801514x15 + 30109320x14 + 100880532x13 - 138866430x12 - 120638421x11 + 261338922x10 + 44503222x9 - 240759207x8 + 22047264x7 + 115889073x6 - 21421602x5 - 28758384x4 + 5399355x3 + 3255948x2 - 411264x - 105461 \( 3^{66}\cdot 19^{18} \) $C_3\times C_9$ (as 27T2) Trivial (GRH)
27.27.6504389611606252637488188857147585077648657433962663281.1 x27 - 3x26 - 72x25 + 194x24 + 2136x23 - 5166x22 - 34511x21 + 74439x20 + 337788x19 - 642199x18 - 2109834x17 + 3469977x16 + 8634362x15 - 11919870x14 - 23358597x13 + 25816709x12 + 41360031x11 - 34011447x10 - 46156293x9 + 25045044x8 + 29760855x7 - 8403372x6 - 9106128x5 + 587949x4 + 751973x3 + 31935x2 - 14445x - 1153 \( 3^{36}\cdot 37^{24} \) $C_3\times C_9$ (as 27T2) Trivial (GRH)
27.27.3424497960405311916385247304908867275520984000621827548961.1 x27 - 6x26 - 101x25 + 665x24 + 4039x23 - 30862x22 - 78250x21 + 781658x20 + 631294x19 - 11833279x18 + 2312179x17 + 110719275x16 - 93223059x15 - 644047317x14 + 838327648x13 + 2305955193x12 - 3871097360x11 - 4971409308x10 + 10254915272x9 + 6199663224x8 - 15899447063x7 - 4124731002x6 + 13978784663x5 + 1237075384x4 - 6246677485x3 - 134762902x2 + 1023554967x + 16988281 \( 19^{24}\cdot 31^{18} \) $C_3\times C_9$ (as 27T2) Trivial (GRH)
27.27.4873283973806953022959748626642827335637181614041911288969.1 x27 - 6x26 - 71x25 + 442x24 + 2014x23 - 13298x22 - 29833x21 + 215668x20 + 252089x19 - 2090049x18 - 1244428x17 + 12673590x16 + 3524558x15 - 48977088x14 - 5298545x13 + 120468998x12 + 3352006x11 - 185148056x10 - 486454x9 + 171925849x8 + 2045189x7 - 92239753x6 - 4261315x5 + 26431312x4 + 2604404x3 - 3332540x2 - 488126x + 70153 \( 13^{18}\cdot 37^{24} \) $C_3\times C_9$ (as 27T2) Trivial (GRH)
27.27.21602961940568681480203888396858143586678350003185405580489.1 x27 - 9x26 - 81x25 + 933x24 + 2007x23 - 39807x22 + 6678x21 + 904248x20 - 1262637x19 - 11822536x18 + 26844534x17 + 89638254x16 - 282749058x15 - 371494179x14 + 1710171315x13 + 642477579x12 - 6222060495x11 + 686308842x10 + 13853219952x9 - 5005127394x8 - 18850288581x7 + 8789278983x6 + 15172084575x5 - 7014480921x4 - 6523888629x3 + 2434189824x2 + 1093125672x - 273101111 \( 3^{66}\cdot 31^{18} \) $C_3\times C_9$ (as 27T2) Trivial (GRH)
27.27.82740369509121494587249825446059868376844092109571921823609.1 x27 - 6x26 - 119x25 + 588x24 + 6703x23 - 23664x22 - 229513x21 + 474063x20 + 5090845x19 - 3919676x18 - 73206350x17 - 21588434x16 + 656954365x15 + 787530733x14 - 3325690822x13 - 7213234613x12 + 6583428950x11 + 29933674810x10 + 11963110633x9 - 47377292870x8 - 61123319381x7 - 6523878607x6 + 31218812642x5 + 18121240371x4 - 246741993x3 - 2622725154x2 - 602443376x - 28067027 \( 19^{24}\cdot 37^{18} \) $C_3\times C_9$ (as 27T2) $[2, 2]$ (GRH)
27.27.521955940438809922293374595854472560734963287885444907593441.1 x27 - 9x26 - 99x25 + 906x24 + 4833x23 - 39654x22 - 156102x21 + 968139x20 + 3563946x19 - 13945195x18 - 56219139x17 + 112278861x16 + 582670932x15 - 354069522x14 - 3707506512x13 - 1396052364x12 + 12836504439x11 + 14919397542x10 - 16968716582x9 - 39300644385x8 - 9891055872x7 + 24100026927x6 + 17213661954x5 - 1129546062x4 - 4247511909x3 - 1269306432x2 - 91305144x + 5272453 \( 3^{66}\cdot 37^{18} \) $C_3\times C_9$ (as 27T2) Trivial (GRH)
27.27.854109127767918484727194550995844259867162076193861770225009.1 x27 - 6x26 - 101x25 + 670x24 + 3826x23 - 29942x22 - 65183x21 + 701185x20 + 356998x19 - 9451534x18 + 4123822x17 + 75852203x16 - 79731532x15 - 361313257x14 + 550432787x13 + 983894056x12 - 1975738003x11 - 1390142439x10 + 3935601510x9 + 641980245x8 - 4302987535x7 + 676032279x6 + 2333730233x5 - 940006807x4 - 414810580x3 + 314793135x2 - 56615545x + 2018477 \( 7^{18}\cdot 73^{24} \) $C_3\times C_9$ (as 27T2) Trivial (GRH)
27.27.1237424251695265996553186030546217359162421829813695859696729.1 x27 - 6x26 - 137x25 + 709x24 + 8599x23 - 35066x22 - 323554x21 + 924610x20 + 7956418x19 - 13384023x18 - 130806305x17 + 86373179x16 + 1422742061x15 + 256596263x14 - 9854606544x13 - 8654405011x12 + 40055307468x11 + 61771660232x10 - 77700458908x9 - 199640506816x8 + 13751584729x7 + 280117270166x6 + 129171933167x5 - 142742440584x4 - 115757033393x3 + 8287037006x2 + 20768956575x + 2265222521 \( 19^{24}\cdot 43^{18} \) $C_3\times C_9$ (as 27T2) Trivial (GRH)
27.27.4512385497467278486124161046693886108531644910659813162128201.1 x27 - 6x26 - 89x25 + 608x24 + 2854x23 - 24256x22 - 37459x21 + 502442x20 + 38939x19 - 5964855x18 + 4517402x17 + 42143562x16 - 55948534x15 - 176060310x14 + 322170703x13 + 406625862x12 - 1018443104x11 - 403762596x10 + 1780570826x9 - 109881561x8 - 1631686473x7 + 506463311x6 + 712423287x5 - 307934112x4 - 139835954x3 + 69450354x2 + 9973258x - 5332589 \( 19^{18}\cdot 37^{24} \) $C_3\times C_9$ (as 27T2) $[2, 2]$ (GRH)
27.27.7806116202371923778076833319704235358304327213604702954864321.1 x27 - 9x26 - 117x25 + 1077x24 + 6363x23 - 55647x22 - 218118x21 + 1616472x20 + 5247171x19 - 28705768x18 - 90158310x17 + 315512154x16 + 1076463318x15 - 2036139291x14 - 8535335625x13 + 6189476667x12 + 42360771069x11 + 3486053466x10 - 120399207328x9 - 77931984402x8 + 167444847135x7 + 186039613671x6 - 81038691729x5 - 162267197085x4 - 14975802189x3 + 44317649232x2 + 9431461404x - 2809696843 \( 3^{66}\cdot 43^{18} \) $C_3\times C_9$ (as 27T2) Trivial (GRH)
27.27.78725207281899442169440296957686289952130469188765531717705361.1 x27 - 3x26 - 120x25 + 290x24 + 6036x23 - 11376x22 - 167001x21 + 234648x20 + 2816421x19 - 2737311x18 - 30400659x17 + 17664747x16 + 214692790x15 - 50437221x14 - 994582143x13 - 61951104x12 + 2973052770x11 + 928156266x10 - 5490461910x9 - 2877753387x8 + 5691128145x7 + 4106020983x6 - 2585377374x5 - 2591621310x4 + 53422363x3 + 491101713x2 + 119304222x + 6213203 \( 3^{36}\cdot 73^{24} \) $C_3\times C_9$ (as 27T2) $[3]$ (GRH)
27.27.151387227139400874793584512894425905310908185375198495733583209.1 x27 - 171x25 + 12312x23 - 493905x21 + 12316959x19 - 144362x18 - 201382767x17 + 9162180x16 + 2213413740x15 - 239483790x14 - 16451805348x13 + 3352712412x12 + 81769006062x11 - 27287694702x10 - 263091419295x9 + 130647735324x8 + 511737088221x7 - 352985018796x6 - 515019140298x5 + 478960952040x4 + 156639881529x3 - 237404462490x2 + 43969262832x + 3329578088 \( 3^{66}\cdot 19^{24} \) $C_3\times C_9$ (as 27T2) $[3]$ (GRH)
27.27.151387227139400874793584512894425905310908185375198495733583209.2 x27 - 171x25 + 12312x23 - 493905x21 + 12316959x19 - 56221x18 - 201382767x17 + 3645378x16 + 2213413740x15 - 98688375x14 - 16451805348x13 + 1450706658x12 + 81769006062x11 - 12502317699x10 - 263183382240x9 + 63310449366x8 + 513818842734x7 - 177767378010x6 - 531464834277x5 + 237369275820x4 + 211536642519x3 - 96914645181x2 - 25035315705x + 9868941829 \( 3^{66}\cdot 19^{24} \) $C_3\times C_9$ (as 27T2) $[3]$ (GRH)
27.27.1197336751300349460100016353165918520894496565611371829528951009.1 x27 - 3x26 - 210x25 + 278x24 + 19929x23 + 5937x22 - 1083004x21 - 1964481x20 + 35357121x19 + 118971079x18 - 651688491x17 - 3622053234x16 + 4445915527x15 + 60695501586x14 + 61934493837x13 - 500874109445x12 - 1506251267832x11 + 632120142195x10 + 10208524999752x9 + 17212808525700x8 - 6295882065903x7 - 67953265942575x6 - 122172061784082x5 - 118152234479289x4 - 68213531737236x3 - 22934996039574x2 - 3986229684933x - 260162527969 \( 3^{36}\cdot 7^{18}\cdot 19^{24} \) $C_3\times C_9$ (as 27T2) $[2, 6]$ (GRH)
27.27.1197336751300349460100016353165918520894496565611371829528951009.2 x27 - 3x26 - 210x25 + 341x24 + 19761x23 - 5319x22 - 1071027x21 - 1072779x20 + 35785290x19 + 79547261x18 - 727641144x17 - 2617308423x16 + 7915049615x15 + 47517477258x14 - 16231036935x13 - 470794277397x12 - 610037882562x11 + 2029302136221x10 + 6315551962953x9 + 1612960677906x8 - 17452227111315x7 - 30692199651546x6 - 18015765483522x5 + 2873413735140x4 + 6984224959239x3 + 1384579835685x2 - 495953919873x - 77502107663 \( 3^{36}\cdot 7^{18}\cdot 19^{24} \) $C_3\times C_9$ (as 27T2) $[3]$ (GRH)
27.27.1197336751300349460100016353165918520894496565611371829528951009.3 x27 - 234x25 - 300x24 + 21600x23 + 49233x22 - 1007250x21 - 3087864x20 + 25802124x19 + 98166647x18 - 368176113x17 - 1747356537x16 + 2750706459x15 + 18094018455x14 - 7767041349x13 - 110231138950x12 - 22064613804x11 + 393523655928x10 + 211466391591x9 - 812037279015x8 - 557167152231x7 + 941607757277x6 + 646172244414x5 - 588923699037x4 - 328067407732x3 + 184625797869x2 + 56808287184x - 23416482473 \( 3^{36}\cdot 7^{18}\cdot 19^{24} \) $C_3\times C_9$ (as 27T2) $[3]$ (GRH)
27.27.1197336751300349460100016353165918520894496565611371829528951009.4 x27 - 3x26 - 162x25 + 362x24 + 11058x23 - 17940x22 - 417005x21 + 475152x20 + 9585783x19 - 7334897x18 - 140140161x17 + 67545369x16 + 1325068846x15 - 360894987x14 - 8127116829x13 + 949692990x12 + 32083489470x11 + 34580448x10 - 79891828714x9 - 7402115451x8 + 120762893079x7 + 19715601263x6 - 103424572098x5 - 22163323110x4 + 44013206071x3 + 10730880483x2 - 6912437058x - 1834540021 \( 3^{36}\cdot 7^{18}\cdot 19^{24} \) $C_3\times C_9$ (as 27T2) $[3]$ (GRH)
27.27.1197336751300349460100016353165918520894496565611371829528951009.5 x27 - 9x26 - 153x25 + 1380x24 + 10011x23 - 89964x22 - 366086x21 + 3289107x20 + 8195640x19 - 74863229x18 - 115293333x17 + 1111829427x16 + 994569364x15 - 10957304562x14 - 4643357544x13 + 71264766946x12 + 4719112581x11 - 297223405968x10 + 61859763056x9 + 747502977825x8 - 308198445204x7 - 1001646366449x6 + 552392947014x5 + 525970815906x4 - 343918548357x3 + 26874655680x2 + 2448910590x - 226688239 \( 3^{36}\cdot 7^{18}\cdot 19^{24} \) $C_3\times C_9$ (as 27T2) $[3]$ (GRH)
27.27.1197336751300349460100016353165918520894496565611371829528951009.6 x27 - 9x26 - 153x25 + 1380x24 + 10011x23 - 86886x22 - 383528x21 + 2960787x20 + 9796200x19 - 59973575x18 - 174434025x17 + 738720423x16 + 2134780606x15 - 5368801578x14 - 17089817922x13 + 20633038024x12 + 83517640365x11 - 27094243584x10 - 228532520050x9 - 51466910463x8 + 315859629984x7 + 184866910465x6 - 169543892730x5 - 152909392110x4 - 1004242821x3 + 15202545204x2 - 844847976x - 111053593 \( 3^{36}\cdot 7^{18}\cdot 19^{24} \) $C_3\times C_9$ (as 27T2) $[3]$ (GRH)
27.27.1197336751300349460100016353165918520894496565611371829528951009.7 x27 - 3x26 - 162x25 + 362x24 + 11058x23 - 16344x22 - 417803x21 + 322335x20 + 9627678x19 - 1383413x18 - 140166894x17 - 54908529x16 + 1288690420x15 + 1075653042x14 - 7259510481x13 - 8680107239x12 + 23559312123x11 + 35193844791x10 - 40428696341x9 - 70735013982x8 + 36838185093x7 + 69532031920x6 - 22855569024x5 - 32729761209x4 + 11473645521x3 + 5579986791x2 - 2960472531x + 343950769 \( 3^{36}\cdot 7^{18}\cdot 19^{24} \) $C_3\times C_9$ (as 27T2) $[3]$ (GRH)
27.27.1197336751300349460100016353165918520894496565611371829528951009.8 x27 - 234x25 - 249x24 + 22626x23 + 42558x22 - 1176444x21 - 2979873x20 + 35915889x19 + 111309958x18 - 659712528x17 - 2427785484x16 + 7124089977x15 + 31852073331x14 - 40489809264x13 - 249129898160x12 + 64602332640x11 + 1102440345990x10 + 457955338088x9 - 2397853291923x8 - 2310077106372x7 + 1456668702112x6 + 2956555931049x5 + 1371196307376x4 + 149958202254x3 - 31775939244x2 - 3498281892x + 353597867 \( 3^{36}\cdot 7^{18}\cdot 19^{24} \) $C_3\times C_9$ (as 27T2) $[2, 6]$ (GRH)
27.27.1197336751300349460100016353165918520894496565611371829528951009.9 x27 - 234x25 - 363x24 + 21600x23 + 58746x22 - 1010232x21 - 3754845x20 + 25508145x19 + 122869178x18 - 334737288x17 - 2243559090x16 + 1661065767x15 + 23417551341x14 + 9070899120x13 - 135972690394x12 - 155269579194x11 + 394444022466x10 + 726143959982x9 - 394126983513x8 - 1382959296534x7 - 230053380286x6 + 1005649338285x5 + 492843065832x4 - 174788627574x3 - 142021806498x2 - 17497701342x + 1193490397 \( 3^{36}\cdot 7^{18}\cdot 19^{24} \) $C_3\times C_9$ (as 27T2) $[2, 6]$ (GRH)
27.27.1197336751300349460100016353165918520894496565611371829528951009.10 x27 - 234x25 - 15x24 + 21600x23 + 1923x22 - 1048518x21 - 36198x20 + 30177957x19 - 2255516x18 - 546700113x17 + 117546663x16 + 6402152565x15 - 2363379129x14 - 48608855199x13 + 25496147479x12 + 234863069337x11 - 157505340675x10 - 690719521993x9 + 551539138572x8 + 1133759797215x7 - 1025115854027x6 - 857479276836x5 + 846276915456x4 + 160140482187x3 - 159434629011x2 - 16629567129x + 2164132187 \( 3^{36}\cdot 7^{18}\cdot 19^{24} \) $C_3\times C_9$ (as 27T2) $[3]$ (GRH)
27.27.4226100704227770327423556410760485273603323729873037153574412049.1 x27 - 9x26 - 171x25 + 1662x24 + 12105x23 - 131490x22 - 453414x21 + 5848551x20 + 9316386x19 - 161570611x18 - 87089931x17 + 2896436709x16 - 301799844x15 - 34271005878x14 + 17195762052x13 + 267669198096x12 - 196205674761x11 - 1360829134422x10 + 1139084249570x9 + 4372192409787x8 - 3630889722708x7 - 8428513893225x6 + 6048620755506x5 + 8864208737262x4 - 4498476763089x3 - 4006776962952x2 + 921282187860x + 173820270061 \( 3^{66}\cdot 61^{18} \) $C_3\times C_9$ (as 27T2) Trivial (GRH)
27.27.12882515415852435459493331403759124565080304093640247033847689489.1 x27 - 6x26 - 149x25 + 788x24 + 9832x23 - 42520x22 - 381437x21 + 1216319x20 + 9582638x19 - 19409897x18 - 160108066x17 + 155008644x16 + 1756031318x15 - 149163963x14 - 12079333253x13 - 7562465658x12 + 47644690593x11 + 58813589752x10 - 88610606092x9 - 177046464592x8 + 27034763677x7 + 205863517381x6 + 81470197594x5 - 63004124267x4 - 47812852922x3 - 8296111176x2 - 149023054x + 24923387 \( 7^{18}\cdot 109^{24} \) $C_3\times C_9$ (as 27T2) $[2, 2]$ (GRH)
27.27.22874376238048151146999094376461057406235644645953493108395282961.1 x27 - 9x26 - 189x25 + 1680x24 + 16011x23 - 135216x22 - 811224x21 + 6143229x20 + 27534006x19 - 173103583x18 - 657009639x17 + 3125053791x16 + 11114099142x15 - 35932528620x14 - 130592837952x13 + 250836674670x12 + 1021415604147x11 - 930934482786x10 - 4988671858122x9 + 1049534716941x8 + 13954608198684x7 + 2985430435785x6 - 20357236188306x5 - 8830845112932x4 + 13243359313719x3 + 6479388550764x2 - 2750267537172x - 1151745452469 \( 3^{66}\cdot 67^{18} \) $C_3\times C_9$ (as 27T2) Trivial (GRH)
27.27.58983288808059104765952482916808157759827216339270579472138526889.1 x27 - 6x26 - 119x25 + 746x24 + 5530x23 - 37564x22 - 127355x21 + 999299x20 + 1505470x19 - 15429798x18 - 8000144x17 + 144737679x16 + 1202790x15 - 849961797x14 + 177434127x13 + 3185085572x12 - 727188729x11 - 7601774021x10 + 860974092x9 + 11059085461x8 + 854116693x7 - 8633121087x6 - 2479823783x5 + 2520335249x4 + 1318748708x3 + 197825781x2 + 11769907x + 241567 \( 13^{18}\cdot 73^{24} \) $C_3\times C_9$ (as 27T2) $[2, 2]$ (GRH)
27.27.107106121656197668357044180433735940609513745651269801273974583001.1 x27 - 9x26 - 207x25 + 2112x24 + 16893x23 - 211032x22 - 634038x21 + 11704797x20 + 5617746x19 - 393140443x18 + 437158845x17 + 8144357769x16 - 19135943232x15 - 99785979396x14 + 367193241090x13 + 600310861842x12 - 3835851698421x11 + 107461159776x10 + 21186874621942x9 - 22126898435067x8 - 48962930005890x7 + 97874407378491x6 + 741345334326x5 - 93507662067480x4 + 29359018756881x3 + 28868873558292x2 - 7673425487946x - 2813528454063 \( 3^{66}\cdot 73^{18} \) $C_3\times C_9$ (as 27T2) $[3]$ (GRH)
27.27.443905427170893592618091312247244421283763327307281442575957150569.1 x27 - 9x26 - 225x25 + 1644x24 + 25263x23 - 122580x22 - 1789356x21 + 4127985x20 + 83303766x19 - 6907183x18 - 2481341895x17 - 4572350253x16 + 42769856514x15 + 169288875360x14 - 275778124056x13 - 2730350841870x12 - 3198616042653x11 + 16864294008150x10 + 62786902579694x9 + 45728358013593x8 - 202686294270924x7 - 677653689800451x6 - 1034723340656082x5 - 944724683324952x4 - 533618215210377x3 - 178295033152692x2 - 31044631374180x - 2072482797673 \( 3^{66}\cdot 79^{18} \) $C_3\times C_9$ (as 27T2) n/a
27.27.504724077808035841778557530783708473162637353188340488433492146609.1 x27 - 6x26 - 173x25 + 805x24 + 12829x23 - 41798x22 - 525887x21 + 1074049x20 + 12931133x19 - 14262294x18 - 197099335x17 + 84388495x16 + 1886796975x15 + 74350078x14 - 11332953439x13 - 4069183891x12 + 42042763063x11 + 24409158618x10 - 92576569635x9 - 68473588099x8 + 111110219033x7 + 95741259302x6 - 60609893115x5 - 59290655739x4 + 10338086657x3 + 12919246032x2 - 475157373x - 885366943 \( 7^{18}\cdot 127^{24} \) $C_3\times C_9$ (as 27T2) Trivial (GRH)
27.27.1187411143908093381248555091925855631936617111126489321417190047281.1 x27 - 3x26 - 168x25 + 572x24 + 11610x23 - 45264x22 - 425713x21 + 1939944x20 + 8773131x19 - 49261956x18 - 94362513x17 + 759872085x16 + 275657276x15 - 6982699857x14 + 4569640299x13 + 35528125026x12 - 50785958448x11 - 83218822605x10 + 196283403790x9 + 38975332611x8 - 318723893835x7 + 128423804151x6 + 180395569233x5 - 141722795001x4 - 4007013731x3 + 28531403934x2 - 8074445220x + 668804824 \( 3^{36}\cdot 109^{24} \) $C_3\times C_9$ (as 27T2) Trivial (GRH)
27.27.5659106580522258442740055894009895600932750567734671570320232266209.1 x27 - 180x25 + 13581x23 - 568500x21 + 14742063x19 - 174192x18 - 249963084x17 + 11243754x16 + 2843438562x15 - 300038904x14 - 21840737832x13 + 4313717772x12 + 112040890065x11 - 36374296608x10 - 371584562893x9 + 182892909312x8 + 742994668764x7 - 530201597184x6 - 756546767280x5 + 798056616960x4 + 173258396544x3 - 459871520256x2 + 182205736704x - 21684382208 \( 3^{66}\cdot 7^{18}\cdot 13^{18} \) $C_3\times C_9$ (as 27T2) $[3]$ (GRH)
27.27.5659106580522258442740055894009895600932750567734671570320232266209.2 x27 - 180x25 + 13581x23 - 560310x21 + 13841163x19 - 110106x18 - 211280076x17 + 8431398x16 + 1997088057x15 - 229078692x14 - 11538409068x13 + 2713319154x12 + 40044205305x11 - 14681285424x10 - 81200156077x9 + 39061121994x8 + 90794275164x7 - 50957966052x6 - 49424314320x5 + 28585642770x4 + 10186413309x3 - 3822753528x2 - 1276399539x - 67976091 \( 3^{66}\cdot 7^{18}\cdot 13^{18} \) $C_3\times C_9$ (as 27T2) $[3]$ (GRH)
27.27.5659106580522258442740055894009895600932750567734671570320232266209.3 x27 - 180x25 + 13581x23 - 560310x21 + 13841163x19 - 92880x18 - 211280076x17 + 7745112x16 + 1997088057x15 - 233589906x14 - 11538409068x13 + 3103240140x12 + 40044205305x11 - 18541949166x10 - 79554132019x9 + 53008275636x8 + 81498609540x7 - 72744969402x6 - 31916666358x5 + 42662749410x4 - 2061705231x3 - 6710328360x2 + 969338907x + 230754987 \( 3^{66}\cdot 7^{18}\cdot 13^{18} \) $C_3\times C_9$ (as 27T2) $[3]$ (GRH)
27.27.5659106580522258442740055894009895600932750567734671570320232266209.4 x27 - 180x25 + 13581x23 - 568500x21 + 14742063x19 - 173190x18 - 249963084x17 + 11056356x16 + 2843438562x15 - 289163682x14 - 21840737832x13 + 4026509760x12 + 112040890065x11 - 32469442902x10 - 371871177991x9 + 154371096648x8 + 749302072020x7 - 421068854304x6 - 802318146192x5 + 605250420480x4 + 297429400704x3 - 354965068800x2 + 75168039168x + 1993642496 \( 3^{66}\cdot 7^{18}\cdot 13^{18} \) $C_3\times C_9$ (as 27T2) $[3]$ (GRH)
27.27.5659106580522258442740055894009895600932750567734671570320232266209.5 x27 - 9x26 - 189x25 + 1770x24 + 15075x23 - 149400x22 - 659574x21 + 7112223x20 + 17169588x19 - 211132411x18 - 267170931x17 + 4084767207x16 + 2275361346x15 - 52402519296x14 - 6034174794x13 + 446404796160x12 - 65737507815x11 - 2499184727280x10 + 703772052814x9 + 8983662014547x8 - 2901631249080x7 - 19863323081169x6 + 5926406371776x5 + 24929372870136x4 - 5674509280383x3 - 15143291321652x2 + 1878327723222x + 3142740871297 \( 3^{66}\cdot 7^{18}\cdot 13^{18} \) $C_3\times C_9$ (as 27T2) $[3]$ (GRH)
27.27.5659106580522258442740055894009895600932750567734671570320232266209.6 x27 - 9x26 - 261x25 + 2058x24 + 32067x23 - 199422x22 - 2430132x21 + 10339083x20 + 123276078x19 - 285174031x18 - 4239416871x17 + 2545292439x16 + 96103309782x15 + 82399099806x14 - 1330149204990x13 - 2946031839456x12 + 9081521720235x11 + 37741694932692x10 - 1312384302218x9 - 189487015010469x8 - 274189790401506x7 + 84350717576493x6 + 450767216583810x5 + 188746081240014x4 - 199876274766459x3 - 126122964539436x2 + 15086119963302x + 5057089505859 \( 3^{66}\cdot 7^{18}\cdot 13^{18} \) $C_3\times C_9$ (as 27T2) n/a
27.27.5659106580522258442740055894009895600932750567734671570320232266209.7 x27 - 9x26 - 189x25 + 1770x24 + 15075x23 - 149400x22 - 659574x21 + 7112223x20 + 17169588x19 - 211111831x18 - 267294411x17 + 4084396767x16 + 2286309906x15 - 52467778476x14 - 6381215334x13 + 449758945140x12 - 61101574695x11 - 2565990000360x10 + 683906165094x9 + 9640483374987x8 - 2952136236060x7 - 23310660585549x6 + 6532980509736x5 + 34657732013436x4 - 7255493877603x3 - 28679264186472x2 + 3190222769922x + 10071022217437 \( 3^{66}\cdot 7^{18}\cdot 13^{18} \) $C_3\times C_9$ (as 27T2) $[3]$ (GRH)
27.27.5659106580522258442740055894009895600932750567734671570320232266209.8 x27 - 9x26 - 261x25 + 2877x24 + 25515x23 - 385335x22 - 888774x21 + 27904176x20 - 30624669x19 - 1158540616x18 + 4183764714x17 + 25557050754x16 - 174741571434x15 - 143798389803x14 + 3671235722367x13 - 6416274457389x12 - 35021761608051x11 + 155084845070178x10 - 18670398026360x9 - 1202353337008818x8 + 2846666722896927x7 + 52405731960495x6 - 12365151517166049x5 + 27636990777084987x4 - 30918692573230389x3 + 19464015249722088x2 - 6490810357686540x + 878893626230101 \( 3^{66}\cdot 7^{18}\cdot 13^{18} \) $C_3\times C_9$ (as 27T2) n/a
27.27.5659106580522258442740055894009895600932750567734671570320232266209.9 x27 - 9x26 - 333x25 + 2994x24 + 48483x23 - 434322x22 - 4074096x21 + 36210411x20 + 219630546x19 - 1923801079x18 - 7986694239x17 + 68210967663x16 + 200583185334x15 - 1642096841094x14 - 3503200886262x13 + 26759487401136x12 + 42243715332927x11 - 288687216994956x10 - 343364658706698x9 + 1968336232189875x8 + 1787389461378522x7 - 7789317328108479x6 - 5379727037407434x5 + 15167762481168378x4 + 7574956000765869x3 - 9665204246538732x2 - 2609849224374930x + 1335980438165647 \( 3^{66}\cdot 7^{18}\cdot 13^{18} \) $C_3\times C_9$ (as 27T2) n/a
27.27.5659106580522258442740055894009895600932750567734671570320232266209.10 x27 - 9x26 - 333x25 + 2994x24 + 48483x23 - 434322x22 - 4074096x21 + 36210411x20 + 219630546x19 - 1924262449x18 - 7983926019x17 + 68288477823x16 + 200160570414x15 - 1647554386824x14 - 3477186538812x13 + 26968936001406x12 + 41414716489527x11 - 293449181012676x10 - 328865159417878x9 + 2033775649158255x8 + 1652493518068212x7 - 8323967190730809x6 - 4792095978290514x5 + 17626794329742588x4 + 6764432694563259x3 - 15214678979277942x2 - 3402078647206140x + 1914328354712957 \( 3^{66}\cdot 7^{18}\cdot 13^{18} \) $C_3\times C_9$ (as 27T2) n/a
27.27.17860517092005028417206516767820811734461334327640142959315501467081.1 x27 - 9x26 - 279x25 + 3156x24 + 28773x23 - 460404x22 - 955542x21 + 35974809x20 - 57567654x19 - 1579631155x18 + 7062218181x17 + 34301043441x16 - 306209006808x15 - 6539221512x14 + 6604533011718x13 - 17817297444354x12 - 55843161650181x11 + 386037100051812x10 - 379987896358162x9 - 2701094621543055x8 + 10001937729994218x7 - 7711001730164253x6 - 34488237931683786x5 + 120712409085829428x4 - 187652271757816539x3 + 165535685719269948x2 - 80461586519455374x + 16831477313082953 \( 3^{66}\cdot 97^{18} \) $C_3\times C_9$ (as 27T2) n/a
27.27.46521581790658445094934566845164072323103073629781639266605395671761.1 x27 - 3x26 - 192x25 + 755x24 + 14055x23 - 68025x22 - 494100x21 + 2946153x20 + 8585901x19 - 69113725x18 - 58476672x17 + 926380305x16 - 263176183x15 - 7219642587x14 + 7122066258x13 + 32268931643x12 - 48846266253x11 - 78264957723x10 + 163446427076x9 + 85583050641x8 - 284780543145x7 - 3315665497x6 + 245913582318x5 - 61199808147x4 - 89489663845x3 + 33768425463x2 + 7536057522x - 2784493637 \( 3^{36}\cdot 127^{24} \) $C_3\times C_9$ (as 27T2) $[2, 2]$ (GRH)
Next

Download all search results for