| 27.27.706965049015104706497203195837614914543357369.1 |
x27 - 27x25 + 324x23 - 2277x21 + 10395x19 - 32319x17 + 69768x15 - 104652x13 + 107406x11 - 72930x9 + 30888x7 - 7371x5 + 819x3 - 27x - 1 |
\( 3^{94} \) |
$C_{27}$ (as 27T1) |
Trivial
(GRH)
|
| 27.27.93991579198394673195940551085616659931617170424829641.1 |
x27 - x26 - 52x25 + 47x24 + 1128x23 - 914x22 - 13369x21 + 9612x20 + 95357x19 - 60102x18 - 425693x17 + 231576x16 + 1201391x15 - 553157x14 - 2121177x13 + 810403x12 + 2271851x11 - 706862x10 - 1399735x9 + 342875x8 + 461618x7 - 78149x6 - 74294x5 + 4948x4 + 4861x3 + 271x2 - 34x - 1 |
\( 109^{26} \) |
$C_{27}$ (as 27T1) |
Trivial
(GRH)
|
| 27.27.3287590482487420232312619225433719761322768037503974231209.1 |
x27 - x26 - 78x25 + 175x24 + 2388x23 - 8354x22 - 33013x21 + 180016x20 + 127774x19 - 1968453x18 + 1782518x17 + 10489594x16 - 23282154x15 - 17166283x14 + 103371060x13 - 63556949x12 - 176991137x11 + 284942103x10 + 20494295x9 - 355135692x8 + 239709074x7 + 92044084x6 - 184127684x5 + 70412054x4 + 8685910x3 - 12922671x2 + 3203525x - 255583 |
\( 163^{26} \) |
$C_{27}$ (as 27T1) |
$[2, 2]$
(GRH)
|
| 27.27.1151231499063623584349492991499498083339556847040831466248681.1 |
x27 - 189x25 + 15876x23 - 781011x21 + 24958395x19 - 543185433x17 + 8208135432x15 - 86185422036x13 + 619174216206x11 - 2942988558510x9 + 8725095491112x7 - 14574875422653x5 + 11336014217619x3 - 2616003280989x - 315928389203 |
\( 3^{94}\cdot 7^{18} \) |
$C_{27}$ (as 27T1) |
$[3]$
(GRH)
|
| 27.27.1151231499063623584349492991499498083339556847040831466248681.2 |
x27 - 189x25 + 15876x23 - 781011x21 + 24958395x19 - 543185433x17 + 8208135432x15 - 86185422036x13 + 619174216206x11 - 2942988558510x9 + 8725095491112x7 - 14574875422653x5 + 11336014217619x3 - 2616003280989x - 191719986857 |
\( 3^{94}\cdot 7^{18} \) |
$C_{27}$ (as 27T1) |
$[3]$
(GRH)
|
| 27.27.1808013057924621803706133777735157383417426695926299555844999521.1 |
x27 - x26 - 130x25 + 97x24 + 6904x23 - 3280x22 - 199218x21 + 36137x20 + 3502857x19 + 387789x18 - 39562422x17 - 14938296x16 + 292752760x15 + 176273890x14 - 1416926864x13 - 1094616402x12 + 4408831829x11 + 3876101969x10 - 8563493173x9 - 7794039480x8 + 9927852445x7 + 8336484081x6 - 6439483933x5 - 4024809305x4 + 2109337058x3 + 601104909x2 - 208051850x - 1762213 |
\( 271^{26} \) |
$C_{27}$ (as 27T1) |
Trivial
(GRH)
|
| 27.27.79502042287804104995388608594472718525612115183651404436672117601.1 |
x27 - 351x25 + 54756x23 - 5002569x21 + 296891595x19 - 11999818467x17 + 336756810312x15 - 6566757801084x13 + 87614373819726x11 - 773386139272890x9 + 4258173096231912x7 - 13210014264446727x5 + 19081131715311939x3 - 8177627877990831x - 2175481232872831 |
\( 3^{94}\cdot 13^{18} \) |
$C_{27}$ (as 27T1) |
n/a |
| 27.27.79502042287804104995388608594472718525612115183651404436672117601.2 |
x27 - 351x25 + 54756x23 - 5002569x21 + 296891595x19 - 11999818467x17 + 336756810312x15 - 6566757801084x13 + 87614373819726x11 - 773386139272890x9 + 4258173096231912x7 - 13210014264446727x5 + 19081131715311939x3 - 8177627877990831x - 920226642090821 |
\( 3^{94}\cdot 13^{18} \) |
$C_{27}$ (as 27T1) |
n/a |
| 27.27.11082033513026159843197131857404812003970296978813351756002427720121.1 |
x27 - x26 - 182x25 + 117x24 + 13618x23 - 9406x22 - 563442x21 + 525111x20 + 14278105x19 - 18161357x18 - 227967713x17 + 379632386x16 + 2241789500x15 - 4722897643x14 - 12462752110x13 + 33279114690x12 + 31181666728x11 - 119083238707x10 - 8689190338x9 + 181478462936x8 - 57176007802x7 - 75331044168x6 + 18626907295x5 + 11999475590x4 - 1573415186x3 - 576163073x2 + 46387161x + 743723 |
\( 379^{26} \) |
$C_{27}$ (as 27T1) |
Trivial
(GRH)
|
| 27.27.73614397307175798532497185733881845387702404681973260785482012855329.1 |
x27 - 513x25 + 116964x23 - 15617943x21 + 1354686795x19 - 80025043581x17 + 3282297025608x15 - 93545465229828x13 + 1824136571981646x11 - 23533613799022470x9 + 189376374570957288x7 - 858649698338772249x5 + 1812704918715185859x3 - 1135430553480940593x - 319768342177193387 |
\( 3^{94}\cdot 19^{18} \) |
$C_{27}$ (as 27T1) |
n/a |
| 27.27.73614397307175798532497185733881845387702404681973260785482012855329.2 |
x27 - 513x25 + 116964x23 - 15617943x21 + 1354686795x19 - 80025043581x17 + 3282297025608x15 - 93545465229828x13 + 1824136571981646x11 - 23533613799022470x9 + 189376374570957288x7 - 858649698338772249x5 + 1812704918715185859x3 - 1135430553480940593x - 4600558507235203 |
\( 3^{94}\cdot 19^{18} \) |
$C_{27}$ (as 27T1) |
n/a |
| 27.27.153057165655742785694240270408062158957719092936539775009144398818809.1 |
x27 - x26 - 270x25 + 47x24 + 29577x23 + 3337x22 - 1780259x21 - 192801x20 + 66361580x19 - 4080349x18 - 1617344119x17 + 516991856x16 + 26245873136x15 - 16092388946x14 - 281167865555x13 + 254179800245x12 + 1920886337379x11 - 2242620213654x10 - 7833979925097x9 + 10946482266142x8 + 16962632962667x7 - 27783814512537x6 - 14229439088616x5 + 30919931451508x4 - 2408923070548x3 - 7952131380114x2 + 1824983191615x - 89453361143 |
\( 7^{18}\cdot 109^{26} \) |
$C_{27}$ (as 27T1) |
n/a |
| 27.27.153057165655742785694240270408062158957719092936539775009144398818809.2 |
x27 - x26 - 270x25 + 47x24 + 29577x23 + 17071x22 - 1706248x21 - 2065966x20 + 56748543x19 + 97784729x18 - 1133435022x17 - 2444680389x16 + 13795117056x15 + 35784378577x14 - 100258381849x13 - 319085698582x12 + 393103177385x11 + 1730848478672x10 - 470512221204x9 - 5450598257003x8 - 2048147111227x7 + 8688783015200x6 + 7880177941710x5 - 3967891227901x4 - 7804346234595x3 - 3131913897999x2 - 284679967632x - 5532747569 |
\( 7^{18}\cdot 109^{26} \) |
$C_{27}$ (as 27T1) |
$[3]$
(GRH)
|
| 27.27.353740923422167929660095172127764982174048848841031999908387732793569.1 |
x27 - x26 - 208x25 + 123x24 + 17870x23 - 1088x22 - 841786x21 - 443292x20 + 24039830x19 + 27033889x18 - 429353878x17 - 739754812x16 + 4721934257x15 + 11204887862x14 - 29627415002x13 - 97647366531x12 + 81012640811x11 + 475857218485x10 + 83530098447x9 - 1173563894813x8 - 978803617366x7 + 1049934817162x6 + 1660652330971x5 + 298182116040x4 - 410938972356x3 - 136886280910x2 + 26713087915x + 8539831241 |
\( 433^{26} \) |
$C_{27}$ (as 27T1) |
Trivial
(GRH)
|
| 27.27.7511955241024825880501672185173495875424957194130773062050731864857009.1 |
x27 - x26 - 234x25 + 451x24 + 22410x23 - 59336x22 - 1146120x21 + 3693810x20 + 34438763x19 - 128044212x18 - 633592894x17 + 2668309905x16 + 7191540555x15 - 34553534532x14 - 49158187704x13 + 278963008001x12 + 190196186526x11 - 1372095146729x10 - 381761929893x9 + 3905637763092x8 + 497849168333x7 - 5908214090044x6 - 1034156707955x5 + 4070335505780x4 + 1245264135357x3 - 878470562528x2 - 387476751728x - 27950290933 |
\( 487^{26} \) |
$C_{27}$ (as 27T1) |
Trivial
(GRH)
|
| 27.27.14107631800772057462614083047171090763038947897293819627757634951745561.1 |
x27 - 327x25 - 218x24 + 43164x23 + 43818x22 - 3072165x21 - 3647358x20 + 131962812x19 + 165292505x18 - 3613267269x17 - 4519002660x16 + 64778023437x15 + 78260935833x14 - 767119231971x13 - 876995136787x12 + 5963472358983x11 + 6362362120011x10 - 29734911579460x9 - 29277206700381x8 + 90619763226495x7 + 81336836424974x6 - 153407836629198x5 - 123198584898693x4 + 115302813487550x3 + 80431235416368x2 - 13411789508832x - 7092040020823 |
\( 3^{36}\cdot 109^{26} \) |
$C_{27}$ (as 27T1) |
$[3]$
(GRH)
|
| 27.27.14107631800772057462614083047171090763038947897293819627757634951745561.2 |
x27 - 327x25 - 218x24 + 43164x23 + 61476x22 - 3018210x21 - 6507954x20 + 121903638x19 + 347122817x18 - 2891823192x17 - 10299084090x16 + 38866417215x15 + 175020065793x14 - 261230425254x13 - 1695101848663x12 + 460247647320x11 + 9167918905077x10 + 3708053868470x9 - 27072768198312x8 - 21922844820627x7 + 41739348314777x6 + 46953795423150x5 - 28185634575723x4 - 45243443721079x3 + 1114518996171x2 + 16368292431012x + 4826968628849 |
\( 3^{36}\cdot 109^{26} \) |
$C_{27}$ (as 27T1) |
$[3]$
(GRH)
|
| 27.27.115645541170359168800904668451418896961215191921100766227083814325184041.1 |
x27 - x26 - 260x25 + 127x24 + 24978x23 - 19668x22 - 1241609x21 + 1622160x20 + 35778151x19 - 67728086x18 - 614779252x17 + 1558672841x16 + 6070505088x15 - 20405620517x14 - 29583496180x13 + 148707111628x12 + 27952037234x11 - 564208979448x10 + 257304955275x9 + 1047941306021x8 - 809764643713x7 - 895854373113x6 + 747910684042x5 + 423859606824x4 - 246881343980x3 - 114088799811x2 + 19932730946x + 9025899413 |
\( 541^{26} \) |
$C_{27}$ (as 27T1) |
n/a |
| 27.27.494206476726811255379944367361178473261552448264840656699721419592855929.1 |
x27 - 837x25 + 311364x23 - 67834107x21 + 9600000795x19 - 925265531169x17 + 61919356816008x15 - 2879250091944372x13 + 91605614767388046x11 - 1928241644177736030x9 + 25316678528262981288x7 - 187285883203400009301x5 + 645095819922822254259x3 - 659273750031016149957x - 254625961590055084699 |
\( 3^{94}\cdot 31^{18} \) |
$C_{27}$ (as 27T1) |
n/a |
| 27.27.494206476726811255379944367361178473261552448264840656699721419592855929.2 |
x27 - 837x25 + 311364x23 - 67834107x21 + 9600000795x19 - 925265531169x17 + 61919356816008x15 - 2879250091944372x13 + 91605614767388046x11 - 1928241644177736030x9 + 25316678528262981288x7 - 187285883203400009301x5 + 645095819922822254259x3 - 659273750031016149957x - 209910532282507790711 |
\( 3^{94}\cdot 31^{18} \) |
$C_{27}$ (as 27T1) |
n/a |
| 27.27.11940677720052639937823094663962830546187812969131075398124270924891510801.1 |
x27 - 999x25 + 443556x23 - 115336881x21 + 19481903595x19 - 2241127346283x17 + 179005600103112x15 - 9934810805722716x13 + 377261368227838926x11 - 9478109683254965610x9 + 148527554095242519912x7 - 1311430790136402704223x5 + 5391437692782988895139x3 - 6576369053834195245719x - 2893634395862792231483 |
\( 3^{94}\cdot 37^{18} \) |
$C_{27}$ (as 27T1) |
n/a |
| 27.27.11940677720052639937823094663962830546187812969131075398124270924891510801.2 |
x27 - 999x25 + 443556x23 - 115336881x21 + 19481903595x19 - 2241127346283x17 + 179005600103112x15 - 9934810805722716x13 + 377261368227838926x11 - 9478109683254965610x9 + 148527554095242519912x7 - 1311430790136402704223x5 + 5391437692782988895139x3 - 6576369053834195245719x - 894239309602828075753 |
\( 3^{94}\cdot 37^{18} \) |
$C_{27}$ (as 27T1) |
n/a |
| 27.27.178578900240970840458250689871157457776932189215069373149025720786258346481.1 |
x27 - 1161x25 + 599076x23 - 181037439x21 + 35538436395x19 - 4751165869317x17 + 441028857202632x15 - 28446361289569764x13 + 1255382839016013006x11 - 36654079188553959990x9 + 667535465692723883112x7 - 6849824153642382573297x5 + 32726937622958050072419x3 - 46393131355621851201561x - 22298685735659897360231 |
\( 3^{94}\cdot 43^{18} \) |
$C_{27}$ (as 27T1) |
n/a |
| 27.27.178578900240970840458250689871157457776932189215069373149025720786258346481.2 |
x27 - 1161x25 + 599076x23 - 181037439x21 + 35538436395x19 - 4751165869317x17 + 441028857202632x15 - 28446361289569764x13 + 1255382839016013006x11 - 36654079188553959990x9 + 667535465692723883112x7 - 6849824153642382573297x5 + 32726937622958050072419x3 - 46393131355621851201561x - 13967167800173896001791 |
\( 3^{94}\cdot 43^{18} \) |
$C_{27}$ (as 27T1) |
n/a |
| 27.27.493449694474834715367307491089920591429543598652017227708295844390723767289.1 |
x27 - 489x25 - 326x24 + 90954x23 + 83130x22 - 8577060x21 - 8185860x20 + 457201308x19 + 385246262x18 - 14492079306x17 - 8421714480x16 + 279857702460x15 + 47349669510x14 - 3313822863408x13 + 1147496197436x12 + 23285753737722x11 - 21143039489730x10 - 86802211852084x9 + 132948531325152x8 + 118272316935156x7 - 329718615030309x6 + 77698876603932x5 + 245143951250058x4 - 197708702495375x3 + 29863417968666x2 + 13068822764814x - 3091197936923 |
\( 3^{36}\cdot 163^{26} \) |
$C_{27}$ (as 27T1) |
$[2, 6]$
(GRH)
|
| 27.27.493449694474834715367307491089920591429543598652017227708295844390723767289.2 |
x27 - 489x25 - 326x24 + 90954x23 + 135942x22 - 8327670x21 - 21586905x20 + 407434800x19 + 1590643487x18 - 10239551442x17 - 59437041438x16 + 94661845923x15 + 1131991461396x14 + 888897228816x13 - 9943557891787x12 - 24693521462100x11 + 22733911982439x10 + 164201192000225x9 + 162818812310040x8 - 280715203969491x7 - 787809488325546x6 - 492327500439375x5 + 533351595404790x4 + 1154685729661558x3 + 872048463931521x2 + 319734157042743x + 47584712719603 |
\( 3^{36}\cdot 163^{26} \) |
$C_{27}$ (as 27T1) |
n/a |
| 27.27.718609355602660210319584878812136494786740645292210033727402940660065354649.1 |
x27 - x26 - 364x25 + 103x24 + 54397x23 + 20889x22 - 4319419x21 - 4222885x20 + 197554784x19 + 291920915x18 - 5296136455x17 - 9934444834x16 + 81671565089x15 + 178480393873x14 - 690978198420x13 - 1710585763116x12 + 2852693916452x11 + 8291321681691x10 - 4155692643926x9 - 17383913593462x8 + 395018931867x7 + 13574520952295x6 + 6524981901x5 - 4239629686794x4 + 189048734793x3 + 495707735418x2 - 23951734380x - 17999855161 |
\( 757^{26} \) |
$C_{27}$ (as 27T1) |
Trivial
(GRH)
|
| 27.27.3463254175600113063839837232871102966170246194081956872095753304432278349849.1 |
x27 - 513x25 + 116964x23 - 15617943x21 + 1354686795x19 - 3058506x18 - 80025043581x17 + 1046009052x16 + 3282297025608x15 - 149056289910x14 - 93545465229828x13 + 11454147789084x12 + 1824136571981646x11 - 512982190268262x10 - 23529533875005090x9 + 13495377620903508x8 + 188678707563985308x7 - 199431691508907396x6 - 818882678941369389x5 + 1476312521559444360x4 + 973178953658903259x3 - 4207490686444416426x2 + 3649867447339870227x - 1053420808747042331 |
\( 3^{94}\cdot 19^{24} \) |
$C_{27}$ (as 27T1) |
$[9]$
(GRH)
|
| 27.27.3463254175600113063839837232871102966170246194081956872095753304432278349849.2 |
x27 - 513x25 + 116964x23 - 15617943x21 + 1354686795x19 - 2334150x18 - 80025043581x17 + 798279300x16 + 3282297025608x15 - 113754800250x14 - 93545465229828x13 + 8741424428100x12 + 1824136571981646x11 - 391490936887050x10 - 23530968709997016x9 + 10299223108874700x8 + 188924064347604654x7 - 152199630386703900x6 - 832868015607672111x5 + 1126672588576899000x4 + 1268424949947516279x3 - 3211016877444162150x2 + 1966965268494776013x - 342892963174292929 |
\( 3^{94}\cdot 19^{24} \) |
$C_{27}$ (as 27T1) |
n/a |
| 27.27.3463254175600113063839837232871102966170246194081956872095753304432278349849.3 |
x27 - 513x25 + 116964x23 - 15617943x21 + 1354686795x19 - 724356x18 - 80025043581x17 + 247729752x16 + 3282297025608x15 - 35301489660x14 - 93545465229828x13 + 2712723360984x12 + 1824136571981646x11 - 121491253381212x10 - 23532675108670668x9 + 3196154512028808x8 + 189215858520799146x7 - 47232061122203496x6 - 849500283479758155x5 + 349639932982545360x4 + 1619550605024888319x3 - 996473809000254276x2 - 34450965446244615x - 53756552511721 |
\( 3^{94}\cdot 19^{24} \) |
$C_{27}$ (as 27T1) |
$[9]$
(GRH)
|
| 27.27.3463254175600113063839837232871102966170246194081956872095753304432278349849.4 |
x27 - 513x25 + 116964x23 - 15617943x21 + 1354686795x19 - 768474x18 - 80025043581x17 + 262818108x16 + 3282297025608x15 - 37451580390x14 - 93545465229828x13 + 2877945888636x12 + 1824136571981646x11 - 128890862298198x10 - 23533044355733718x9 + 3390821146614132x8 + 189278999768580696x7 - 50108801388853284x6 - 853099334603306505x5 + 370935283008394440x4 + 1695530573188686819x3 - 1057165556573924154x2 - 467536783979896065x + 18638104434069437 |
\( 3^{94}\cdot 19^{24} \) |
$C_{27}$ (as 27T1) |
n/a |
| 27.27.3463254175600113063839837232871102966170246194081956872095753304432278349849.5 |
x27 - 513x25 + 116964x23 - 15617943x21 + 1354686795x19 - 124146x18 - 80025043581x17 + 42457932x16 + 3282297025608x15 - 6050255310x14 - 93545465229828x13 + 464928508044x12 + 1824136571981646x11 - 20822155324542x10 - 23533430642034312x9 + 547782855461028x8 + 189345054725982270x7 - 8095013308479636x6 - 856864467175196223x5 + 59924124491342760x4 + 1775016705261914199x3 - 170783754800326866x2 - 920607736797292131x + 249008793852866527 |
\( 3^{94}\cdot 19^{24} \) |
$C_{27}$ (as 27T1) |
$[9]$
(GRH)
|
| 27.27.3463254175600113063839837232871102966170246194081956872095753304432278349849.6 |
x27 - 513x25 + 116964x23 - 15617943x21 + 1354686795x19 - 644328x18 - 80025043581x17 + 220360176x16 + 3282297025608x15 - 31401325080x14 - 93545465229828x13 + 2413017380592x12 + 1824136571981646x11 - 108068706973656x10 - 23533855837754592x9 + 2843038291153104x8 + 189417763194150150x7 - 42013788080373648x6 - 861008849860765383x5 + 311011158517051680x4 + 1862509228623929799x3 - 886381801773597288x2 - 1419315119960781051x + 851940306004555639 |
\( 3^{94}\cdot 19^{24} \) |
$C_{27}$ (as 27T1) |
$[9]$
(GRH)
|
| 27.27.4310644515294872927421140184636954783440245428743294849809208125862657353561.1 |
x27 - x26 - 390x25 + 631x24 + 62487x23 - 125051x22 - 5461513x21 + 11987778x20 + 291724639x19 - 652242171x18 - 10104781105x17 + 21752982180x16 + 234561491462x15 - 462871071073x14 - 3699437470708x13 + 6382397987484x12 + 39482488248952x11 - 56708916711397x10 - 278381781984279x9 + 315391810879847x8 + 1232012669973146x7 - 1030181727594079x6 - 3102106712635726x5 + 1730205865206149x4 + 3613695941313439x3 - 1068842915605065x2 - 1080339624346363x - 21768517978327 |
\( 811^{26} \) |
$C_{27}$ (as 27T1) |
n/a |
| 27.27.96679628704383224900411211844182831619287468040811424837360737394634888225089.1 |
x27 - 1647x25 + 1205604x23 - 516835737x21 + 143927517195x19 - 27296507852019x17 + 3594473478418248x15 - 328894323275269692x13 + 20590515659785963086x11 - 852854074550393903130x9 + 22033735855443117779688x7 - 320741086713893566770231x5 + 2173911809949723063664899x3 - 4371712760668124402754687x - 2525651376607972493539559 |
\( 3^{94}\cdot 61^{18} \) |
$C_{27}$ (as 27T1) |
n/a |
| 27.27.96679628704383224900411211844182831619287468040811424837360737394634888225089.2 |
x27 - 1647x25 + 1205604x23 - 516835737x21 + 143927517195x19 - 27296507852019x17 + 3594473478418248x15 - 328894323275269692x13 + 20590515659785963086x11 - 852854074550393903130x9 + 22033735855443117779688x7 - 320741086713893566770231x5 + 2173911809949723063664899x3 - 4371712760668124402754687x - 1146875791564075382836381 |
\( 3^{94}\cdot 61^{18} \) |
$C_{27}$ (as 27T1) |
n/a |
| 27.27.111225225787238495736527863011990180372275621447089344667888529197779462256081.1 |
x27 - x26 - 442x25 + 57x24 + 74120x23 - 23792x22 - 6491047x21 + 6342342x20 + 330851832x19 - 609480375x18 - 10054716230x17 + 28281288192x16 + 175097584226x15 - 703058979520x14 - 1504988947931x13 + 9607454297019x12 + 2167507434225x11 - 71555147996156x10 + 61821212164769x9 + 272496425836143x8 - 473016326020054x7 - 401896444043157x6 + 1367425404919687x5 - 245718011944824x4 - 1546434511258730x3 + 1009917274857026x2 + 397514834392024x - 384744919097023 |
\( 919^{26} \) |
$C_{27}$ (as 27T1) |
n/a |
| 27.27.30636512167696967158640831949436414926745966008852301931537630975865004722034443609.1 |
x27 - 999x25 + 443556x23 - 115336881x21 + 19481903595x19 - 43544412x18 - 2241127346283x17 + 29000578392x16 + 179005600103112x15 - 8047660503780x14 - 9934810805722716x13 + 1204287685165656x12 + 377261368227838926x11 - 105031090256233284x10 - 9477154119242768340x9 + 5380823546973182088x8 + 148209351279180829002x7 - 154848144296228240088x6 - 1276110277553555013213x5 + 2232226495698874629840x4 + 3939372175488139375839x3 - 12388857051128754195612x2 + 9541558188138634418511x - 2080943940400297569469 |
\( 3^{94}\cdot 37^{24} \) |
$C_{27}$ (as 27T1) |
n/a |
| 27.27.30636512167696967158640831949436414926745966008852301931537630975865004722034443609.2 |
x27 - 999x25 + 443556x23 - 115336881x21 + 19481903595x19 - 16541442x18 - 2241127346283x17 + 11016600372x16 + 179005600103112x15 - 3057106603230x14 - 9934810805722716x13 + 457479019247796x12 + 377261368227838926x11 - 39898705892968494x10 - 9477657404647124790x9 + 2044041394209001308x8 + 148376945318831526852x7 - 58822969011125704308x6 - 1294713215954782474563x5 + 847967475355188724440x4 + 4704159643094157231339x3 - 4706219488221297420642x2 + 1052417297711836222461x + 46181559728398496293 |
\( 3^{94}\cdot 37^{24} \) |
$C_{27}$ (as 27T1) |
$[9]$
(GRH)
|
| 27.27.30636512167696967158640831949436414926745966008852301931537630975865004722034443609.3 |
x27 - 999x25 + 443556x23 - 115336881x21 + 19481903595x19 - 22791186x18 - 2241127346283x17 + 15178929876x16 + 179005600103112x15 - 4212153040590x14 - 9934810805722716x13 + 630325301674068x12 + 377261368227838926x11 - 54973370953145502x10 - 9477769626051942234x9 + 2816328081138069564x8 + 148414315046635735704x7 - 81047663668306668564x6 - 1298861255741049657135x5 + 1168349437296368858520x4 + 4874690167640696959299x3 - 6484339376994847164786x2 - 840471524754754757895x + 1431296727003283447513 |
\( 3^{94}\cdot 37^{24} \) |
$C_{27}$ (as 27T1) |
n/a |
| 27.27.30636512167696967158640831949436414926745966008852301931537630975865004722034443609.4 |
x27 - 999x25 + 443556x23 - 115336881x21 + 19481903595x19 - 8551440x18 - 2241127346283x17 + 5695259040x16 + 179005600103112x15 - 1580434383600x14 - 9934810805722716x13 + 236503225314720x12 + 377261368227838926x11 - 20626459864948080x10 - 9478067851112544048x9 + 1056709405388878560x8 + 148513623991816139766x7 - 30409748443968838560x6 - 1309884548656074508017x5 + 438374295750719620800x4 + 5327869987480607495559x3 - 2432977341416493895440x2 - 5870767524977761710381x + 3792769205762397922849 |
\( 3^{94}\cdot 37^{24} \) |
$C_{27}$ (as 27T1) |
n/a |
| 27.27.30636512167696967158640831949436414926745966008852301931537630975865004722034443609.5 |
x27 - 999x25 + 443556x23 - 115336881x21 + 19481903595x19 - 20753226x18 - 2241127346283x17 + 13821648516x16 + 179005600103112x15 - 3835507463190x14 - 9934810805722716x13 + 573962383491588x12 + 377261368227838926x11 - 50057719303087782x10 - 9477982179287626548x9 + 2564495465835112524x8 + 148485095274118612266x7 - 73800480627921571524x6 - 1306717860991648955517x5 + 1063877058402505771320x4 + 5197683939054223670559x3 - 5904517674133907030826x2 - 4425702387444901252881x + 5039013988182624813037 |
\( 3^{94}\cdot 37^{24} \) |
$C_{27}$ (as 27T1) |
n/a |
| 27.27.30636512167696967158640831949436414926745966008852301931537630975865004722034443609.6 |
x27 - 999x25 + 443556x23 - 115336881x21 + 19481903595x19 - 25092882x18 - 2241127346283x17 + 16711859412x16 + 179005600103112x15 - 4637540986830x14 - 9934810805722716x13 + 693982244562516x12 + 377261368227838926x11 - 60525165757916574x10 - 9478115594426938548x9 + 3100750799597879868x8 + 148529522515509508266x7 - 89232717455094542868x6 - 1311649284786038411517x5 + 1286341771105908345240x4 + 5400420250601345750559x3 - 7139196829637791316082x2 - 6676075445617956340881x + 10217831259149790606431 |
\( 3^{94}\cdot 37^{24} \) |
$C_{27}$ (as 27T1) |
n/a |
| 27.27.2904636282635430627257935704503025621208529312293717639293800815805291320812817603089.1 |
x27 - 981x25 - 1962x24 + 382590x23 + 1502892x22 - 76836171x21 - 436152600x20 + 8593793478x19 + 63853614493x18 - 538247668545x17 - 5252980267026x16 + 17240937970977x15 + 255163612424409x14 - 132413809696623x13 - 7408499319197349x12 - 8959346343291105x11 + 124080882210161235x10 + 316982487984654954x9 - 1037038458999595329x8 - 4405618310583782619x7 + 1681015608216830466x6 + 26342742980579439510x5 + 27048463175169695061x4 - 38812232925049188798x3 - 95324677706378560338x2 - 67082385110470102638x - 16138943926629514561 |
\( 3^{66}\cdot 109^{26} \) |
$C_{27}$ (as 27T1) |
n/a |
| 27.27.2904636282635430627257935704503025621208529312293717639293800815805291320812817603089.2 |
x27 - 981x25 - 1962x24 + 382590x23 + 1302768x22 - 77704356x21 - 341276166x20 + 9085530519x19 + 46242066805x18 - 640020284352x17 - 3580587873270x16 + 27613039133250x15 + 164576945137689x14 - 729737997409152x13 - 4515452537534952x12 + 11800421536957974x11 + 73180199137284495x10 - 117578436400215843x9 - 690714165440312325x8 + 690099098631125814x7 + 3669235005570784794x6 - 1964343944326117491x5 - 10291095715445447166x4 + 1194656375883666906x3 + 12404409711245032941x2 + 3063320788537767798x - 1874520162296417917 |
\( 3^{66}\cdot 109^{26} \) |
$C_{27}$ (as 27T1) |
n/a |
| 27.27.2904636282635430627257935704503025621208529312293717639293800815805291320812817603089.3 |
x27 - 981x25 - 3924x24 + 382590x23 + 2805660x22 - 73225110x21 - 777428766x20 + 6903675666x19 + 108416615105x18 - 232610440878x17 - 8313083080686x16 - 10743842518713x15 + 356369675039019x14 + 1267991081780472x13 - 8109166737504153x12 - 47356437284334108x11 + 77344277257641249x10 + 865257605899112586x9 + 207644338670160276x8 - 7923812360425415109x7 - 8650195833611503449x6 + 33977534604641591400x5 + 43373094180308101017x4 - 71561295489954712743x3 - 56974306727633418045x2 + 68809894376068855206x - 1699412318998420661 |
\( 3^{66}\cdot 109^{26} \) |
$C_{27}$ (as 27T1) |
n/a |
| 27.27.2904636282635430627257935704503025621208529312293717639293800815805291320812817603089.4 |
x27 - 981x25 - 981x24 + 373761x23 + 684738x22 - 71877216x21 - 179714295x20 + 7529151456x19 + 22336994059x18 - 433214741421x17 - 1374989293575x16 + 13413197139192x15 + 41364203974740x14 - 223416498256713x13 - 638856451127076x12 + 1919829902996862x11 + 5078544955694361x10 - 7539868472088462x9 - 19243512359549019x8 + 10977970866234507x7 + 28357598086884837x6 - 6529678433587440x5 - 14268854946745152x4 + 2381897225559600x3 + 2269088447893488x2 - 427628571773184x + 13501336803776 |
\( 3^{66}\cdot 109^{26} \) |
$C_{27}$ (as 27T1) |
n/a |
| 27.27.2904636282635430627257935704503025621208529312293717639293800815805291320812817603089.5 |
x27 - 981x25 - 1962x24 + 373761x23 + 1393020x22 - 70073157x21 - 370235286x20 + 6852111363x19 + 47816065064x18 - 334654866279x17 - 3187424294262x16 + 6206464972035x15 + 109156644703548x14 + 50084440827489x13 - 1920679778347338x12 - 3442346576482824x11 + 16784501025746016x10 + 47366059597665312x9 - 60314381965065024x8 - 270720680823631872x7 - 4158047665852416x6 + 586087104825974016x5 + 349310299238051328x4 - 173303709343893504x3 - 97738973934280704x2 + 23341809755455488x + 1938077279322112 |
\( 3^{66}\cdot 109^{26} \) |
$C_{27}$ (as 27T1) |
$[9]$
(GRH)
|
| 27.27.2904636282635430627257935704503025621208529312293717639293800815805291320812817603089.6 |
x27 - 981x25 - 981x24 + 373761x23 + 708282x22 - 71582916x21 - 190520991x20 + 7528668804x19 + 24716174119x18 - 443924177157x17 - 1659494707047x16 + 14482095775128x15 + 58195882608228x14 - 259786668484341x13 - 1094416253548836x12 + 2502136134254538x11 + 11067766296130557x10 - 12047180244214794x9 - 57055730532335019x8 + 27061786145990799x7 + 130990295541684177x6 - 49384592272051488x5 - 124320658363397712x4 + 59983368323472000x3 + 29619759695053680x2 - 20670342760256832x + 2723029543253312 |
\( 3^{66}\cdot 109^{26} \) |
$C_{27}$ (as 27T1) |
n/a |
| 27.27.101596916227182385192221366107383951083708123828032373165177575777864460122174394998136561.1 |
x27 - 1467x25 - 5868x24 + 880200x23 + 6551622x22 - 270579837x21 - 2885233986x20 + 44085669327x19 + 644999384720x18 - 3448527231303x17 - 79721600074956x16 + 48326300884575x15 + 5633195024422557x14 + 11722756835593800x13 - 225363753591493305x12 - 885777567591533238x11 + 4794638783805720162x10 + 27393004600121870850x9 - 45879597049721326029x8 - 411564370609290248289x7 + 80459334094115940561x6 + 2916568706309748047241x5 + 761157212479400273814x4 - 9009420285696855022620x3 - 1109799760040952250707x2 + 8048659263603645557385x - 2430775462661304142463 |
\( 3^{66}\cdot 163^{26} \) |
$C_{27}$ (as 27T1) |
n/a |