| 24.0.711435861303500483618465120256.1 |
x24 + x22 - x18 - x16 + x12 - x8 - x6 + x2 + 1 |
\( 2^{24}\cdot 3^{12}\cdot 7^{20} \) |
$C_2^2\times C_6$ (as 24T3) |
Trivial
(GRH)
|
| 24.0.10352754344108696148301025390625.1 |
x24 - x23 - x22 + 4x21 - 4x20 - 4x19 + 17x18 + 12x17 - 46x16 + 43x15 + 44x14 - 188x13 + 189x12 + 188x11 + 44x10 - 43x9 - 46x8 - 12x7 + 17x6 + 4x5 - 4x4 - 4x3 - x2 + x + 1 |
\( 3^{12}\cdot 5^{12}\cdot 7^{20} \) |
$C_2^2\times C_6$ (as 24T3) |
Trivial
(GRH)
|
| 24.0.22459526297810799636782730182656.1 |
x24 - x20 + x16 - x12 + x8 - x4 + 1 |
\( 2^{48}\cdot 7^{20} \) |
$C_2^2\times C_6$ (as 24T3) |
$[2]$
(GRH)
|
| 24.0.42247883974617233597120303333376.1 |
x24 - x12 + 1 |
\( 2^{48}\cdot 3^{36} \) |
$C_2^2\times C_6$ (as 24T3) |
$[3]$
(GRH)
|
| 24.0.326829122755018756096000000000000.1 |
x24 - 3x22 + 8x20 - 21x18 + 55x16 - 144x14 + 377x12 - 144x10 + 55x8 - 21x6 + 8x4 - 3x2 + 1 |
\( 2^{24}\cdot 5^{12}\cdot 7^{20} \) |
$C_2^2\times C_6$ (as 24T3) |
$[3]$
(GRH)
|
| 24.0.614787626176508399616000000000000.1 |
x24 - 18x18 + 323x12 - 18x6 + 1 |
\( 2^{24}\cdot 3^{36}\cdot 5^{12} \) |
$C_2^2\times C_6$ (as 24T3) |
$[3]$
(GRH)
|
| 24.0.2914041287899137980901233132568576.1 |
x24 - 2x22 + 8x18 - 16x16 + 64x12 - 256x8 + 512x6 - 2048x2 + 4096 |
\( 2^{36}\cdot 3^{12}\cdot 7^{20} \) |
$C_2^2\times C_6$ (as 24T3) |
$[6]$
(GRH)
|
| 24.0.2914041287899137980901233132568576.2 |
x24 + 2x22 - 8x18 - 16x16 + 64x12 - 256x8 - 512x6 + 2048x2 + 4096 |
\( 2^{36}\cdot 3^{12}\cdot 7^{20} \) |
$C_2^2\times C_6$ (as 24T3) |
$[7]$
(GRH)
|
| 24.0.4971225787269833056964369392336896.1 |
x24 - 13x20 + 143x16 - 336x12 + 663x8 - 26x4 + 1 |
\( 2^{48}\cdot 3^{12}\cdot 7^{16} \) |
$C_2^2\times C_6$ (as 24T3) |
$[3]$
(GRH)
|
| 24.0.34854715807867200628629234134286336.1 |
x24 - 9x18 + 17x12 - 576x6 + 4096 |
\( 2^{24}\cdot 3^{36}\cdot 7^{12} \) |
$C_2^2\times C_6$ (as 24T3) |
$[7]$
(GRH)
|
| 24.0.72340856237421875367936000000000000.1 |
x24 - 15x22 + 158x20 - 789x18 + 2798x16 - 5124x14 + 6639x12 - 5271x10 + 3030x8 - 1062x6 + 253x4 - 18x2 + 1 |
\( 2^{24}\cdot 3^{12}\cdot 5^{12}\cdot 7^{16} \) |
$C_2^2\times C_6$ (as 24T3) |
$[3]$
(GRH)
|
| 24.0.133084684332123489494188901166116961.1 |
x24 - x23 + 3x22 - 8x21 + 8x20 - 24x19 + 37x18 - 120x17 + 194x16 - 329x15 + 744x14 - 904x13 + 1633x12 - 2712x11 + 6696x10 - 8883x9 + 15714x8 - 29160x7 + 26973x6 - 52488x5 + 52488x4 - 157464x3 + 177147x2 - 177147x + 531441 |
\( 3^{12}\cdot 7^{20}\cdot 11^{12} \) |
$C_2^2\times C_6$ (as 24T3) |
$[9]$
(GRH)
|
| 24.0.169450166032303737749261229339181056.1 |
x24 - 11x22 + 76x20 - 327x18 + 1031x16 - 2261x14 + 3677x12 - 4001x10 + 3091x8 - 1302x6 + 371x4 - 21x2 + 1 |
\( 2^{24}\cdot 3^{12}\cdot 13^{20} \) |
$C_2^2\times C_6$ (as 24T3) |
$[6]$
(GRH)
|
| 24.0.507202869744901554493542558837890625.1 |
x24 + 26x18 - 53x12 + 18954x6 + 531441 |
\( 3^{36}\cdot 5^{12}\cdot 7^{12} \) |
$C_2^2\times C_6$ (as 24T3) |
$[3, 3]$
(GRH)
|
| 24.0.987952545632990645956882874687477121.1 |
x24 - x23 - 3x22 + 10x21 - 10x20 - 30x19 + 127x18 + 210x17 - 718x16 + 529x15 + 1830x14 - 7990x13 + 8719x12 + 23970x11 + 16470x10 - 14283x9 - 58158x8 - 51030x7 + 92583x6 + 65610x5 - 65610x4 - 196830x3 - 177147x2 + 177147x + 531441 |
\( 3^{12}\cdot 7^{20}\cdot 13^{12} \) |
$C_2^2\times C_6$ (as 24T3) |
$[2, 4, 4]$
(GRH)
|
| 24.0.1338692086804556824969216000000000000.1 |
x24 - 6x22 + 32x20 - 168x18 + 880x16 - 4608x14 + 24128x12 - 18432x10 + 14080x8 - 10752x6 + 8192x4 - 6144x2 + 4096 |
\( 2^{36}\cdot 5^{12}\cdot 7^{20} \) |
$C_2^2\times C_6$ (as 24T3) |
$[3, 3]$
(GRH)
|
| 24.0.1338692086804556824969216000000000000.2 |
x24 + 6x22 + 32x20 + 168x18 + 880x16 + 4608x14 + 24128x12 + 18432x10 + 14080x8 + 10752x6 + 8192x4 + 6144x2 + 4096 |
\( 2^{36}\cdot 5^{12}\cdot 7^{20} \) |
$C_2^2\times C_6$ (as 24T3) |
$[28]$
(GRH)
|
| 24.0.2283749599146799148302336000000000000.1 |
x24 + 91x20 + 1391x16 + 2688x12 + 1287x8 + 182x4 + 1 |
\( 2^{48}\cdot 5^{12}\cdot 7^{16} \) |
$C_2^2\times C_6$ (as 24T3) |
$[3, 3, 3]$
(GRH)
|
| 24.0.2465824451534772200819297422119140625.1 |
x24 - x23 + 17x22 - 6x21 + 188x20 - 47x19 + 1066x18 + 111x17 + 4083x16 + 396x15 + 8622x14 + 1407x13 + 12820x12 + 2029x11 + 11865x10 + 2619x9 + 7679x8 + 1542x7 + 2678x6 + 721x5 + 616x4 + 85x3 + 36x2 - 3x + 1 |
\( 3^{12}\cdot 5^{12}\cdot 13^{20} \) |
$C_2^2\times C_6$ (as 24T3) |
$[4, 4, 4]$
(GRH)
|
| 24.0.2518170116818978404827136000000000000.1 |
x24 - 144x18 + 20672x12 - 9216x6 + 4096 |
\( 2^{36}\cdot 3^{36}\cdot 5^{12} \) |
$C_2^2\times C_6$ (as 24T3) |
$[21]$
(GRH)
|
| 24.0.2518170116818978404827136000000000000.2 |
x24 + 144x18 + 20672x12 + 9216x6 + 4096 |
\( 2^{36}\cdot 3^{36}\cdot 5^{12} \) |
$C_2^2\times C_6$ (as 24T3) |
$[14]$
(GRH)
|
| 24.0.4201389232919273300173938291676020736.1 |
x24 + 5x22 + 16x20 + 35x18 + 31x16 - 160x14 - 1079x12 - 1440x10 + 2511x8 + 25515x6 + 104976x4 + 295245x2 + 531441 |
\( 2^{24}\cdot 7^{20}\cdot 11^{12} \) |
$C_2^2\times C_6$ (as 24T3) |
$[14]$
(GRH)
|
| 24.0.5349421735921433961299014349756563456.1 |
x24 + 31x20 + 317x16 + 1216x12 + 1462x8 + 301x4 + 1 |
\( 2^{48}\cdot 13^{20} \) |
$C_2^2\times C_6$ (as 24T3) |
$[3, 9]$
(GRH)
|
| 24.0.7903096552035517335267182427091501056.1 |
x24 - 10x18 - 629x12 - 7290x6 + 531441 |
\( 2^{24}\cdot 3^{36}\cdot 11^{12} \) |
$C_2^2\times C_6$ (as 24T3) |
$[39]$
(GRH)
|
| 24.0.11935913115234869169771450911000887296.1 |
x24 - 9x20 + 81x16 - 729x12 + 6561x8 - 59049x4 + 531441 |
\( 2^{48}\cdot 3^{12}\cdot 7^{20} \) |
$C_2^2\times C_6$ (as 24T3) |
$[2, 42]$
(GRH)
|
| 24.24.11935913115234869169771450911000887296.1 |
x24 - 24x22 + 253x20 - 1540x18 + 5984x16 - 15488x14 + 27026x12 - 31448x10 + 23540x8 - 10528x6 + 2416x4 - 192x2 + 1 |
\( 2^{48}\cdot 3^{12}\cdot 7^{20} \) |
$C_2^2\times C_6$ (as 24T3) |
Trivial
(GRH)
|
| 24.0.11935913115234869169771450911000887296.2 |
x24 - 12x22 + 91x20 - 428x18 + 1475x16 - 3472x14 + 5972x12 - 6412x10 + 4847x8 - 1856x6 + 490x4 - 24x2 + 1 |
\( 2^{48}\cdot 3^{12}\cdot 7^{20} \) |
$C_2^2\times C_6$ (as 24T3) |
$[8]$
(GRH)
|
| 24.0.11935913115234869169771450911000887296.3 |
x24 - 4x22 + 15x20 - 56x18 + 209x16 - 780x14 + 2911x12 - 780x10 + 209x8 - 56x6 + 15x4 - 4x2 + 1 |
\( 2^{48}\cdot 3^{12}\cdot 7^{20} \) |
$C_2^2\times C_6$ (as 24T3) |
$[2, 6]$
(GRH)
|
| 24.0.11935913115234869169771450911000887296.4 |
x24 + 33x20 + 340x16 + 1154x12 + 1192x8 + 136x4 + 1 |
\( 2^{48}\cdot 3^{12}\cdot 7^{20} \) |
$C_2^2\times C_6$ (as 24T3) |
$[24]$
(GRH)
|
| 24.0.11935913115234869169771450911000887296.5 |
x24 + 41x20 + 596x16 + 3618x12 + 8016x8 + 2008x4 + 1 |
\( 2^{48}\cdot 3^{12}\cdot 7^{20} \) |
$C_2^2\times C_6$ (as 24T3) |
$[2, 14]$
(GRH)
|
| 24.0.11935913115234869169771450911000887296.6 |
x24 + 4x22 + 15x20 + 56x18 + 209x16 + 780x14 + 2911x12 + 780x10 + 209x8 + 56x6 + 15x4 + 4x2 + 1 |
\( 2^{48}\cdot 3^{12}\cdot 7^{20} \) |
$C_2^2\times C_6$ (as 24T3) |
$[2, 28]$
(GRH)
|
| 24.0.11935913115234869169771450911000887296.7 |
x24 + 12x22 + 91x20 + 428x18 + 1475x16 + 3472x14 + 5972x12 + 6412x10 + 4847x8 + 1856x6 + 490x4 + 24x2 + 1 |
\( 2^{48}\cdot 3^{12}\cdot 7^{20} \) |
$C_2^2\times C_6$ (as 24T3) |
$[2, 42]$
(GRH)
|
| 24.0.11935913115234869169771450911000887296.8 |
x24 + 24x22 + 253x20 + 1540x18 + 5984x16 + 15488x14 + 27026x12 + 31448x10 + 23540x8 + 10528x6 + 2416x4 + 192x2 + 1 |
\( 2^{48}\cdot 3^{12}\cdot 7^{20} \) |
$C_2^2\times C_6$ (as 24T3) |
$[168]$
(GRH)
|
| 24.0.11935913115234869169771450911000887296.9 |
x24 - 21x20 + 343x16 - 1960x12 + 8575x8 - 4802x4 + 2401 |
\( 2^{48}\cdot 3^{12}\cdot 7^{20} \) |
$C_2^2\times C_6$ (as 24T3) |
$[56]$
(GRH)
|
| 24.0.24706027099974596656878326981466227601.1 |
x24 - x23 - 4x22 + 13x21 - 13x20 - 52x19 + 233x18 + 468x17 - 1633x16 + 1057x15 + 5252x14 - 24557x13 + 28653x12 + 98228x11 + 84032x10 - 67648x9 - 418048x8 - 479232x7 + 954368x6 + 851968x5 - 851968x4 - 3407872x3 - 4194304x2 + 4194304x + 16777216 |
\( 3^{12}\cdot 7^{20}\cdot 17^{12} \) |
$C_2^2\times C_6$ (as 24T3) |
$[65]$
(GRH)
|
| 24.0.31188962191164288779371841230414544896.1 |
x24 - 7x22 + 40x20 - 217x18 + 1159x16 - 6160x14 + 32689x12 - 55440x10 + 93879x8 - 158193x6 + 262440x4 - 413343x2 + 531441 |
\( 2^{24}\cdot 7^{20}\cdot 13^{12} \) |
$C_2^2\times C_6$ (as 24T3) |
$[4, 12]$
(GRH)
|
| 24.0.58668541734536482566932318836192444416.1 |
x24 - 154x18 + 22987x12 - 112266x6 + 531441 |
\( 2^{24}\cdot 3^{36}\cdot 13^{12} \) |
$C_2^2\times C_6$ (as 24T3) |
$[26]$
(GRH)
|
| 24.0.61138259958814499261991852715087890625.1 |
x24 - 3x22 - 7x20 + 69x18 - 95x16 - 819x14 + 3977x12 - 13104x10 - 24320x8 + 282624x6 - 458752x4 - 3145728x2 + 16777216 |
\( 5^{12}\cdot 7^{20}\cdot 11^{12} \) |
$C_2^2\times C_6$ (as 24T3) |
$[3, 6]$
(GRH)
|
| 24.0.77844331621911754501328896000000000000.1 |
x24 + 33x22 + 436x20 + 2997x18 + 11783x16 + 27783x14 + 40285x12 + 36003x10 + 19363x8 + 5922x6 + 931x4 + 63x2 + 1 |
\( 2^{24}\cdot 5^{12}\cdot 13^{20} \) |
$C_2^2\times C_6$ (as 24T3) |
$[4, 4, 12]$
(GRH)
|
| 24.0.93855357514722449501524260642553280001.1 |
x24 - x23 + 5x22 - 14x21 + 14x20 - 70x19 + 71x18 - 630x17 + 914x16 - 2039x15 + 7070x14 - 4046x13 + 19671x12 - 20230x11 + 176750x10 - 254875x9 + 571250x8 - 1968750x7 + 1109375x6 - 5468750x5 + 5468750x4 - 27343750x3 + 48828125x2 - 48828125x + 244140625 |
\( 3^{12}\cdot 7^{20}\cdot 19^{12} \) |
$C_2^2\times C_6$ (as 24T3) |
$[84]$
(GRH)
|
| 24.0.99537902621050480929474090019571367936.1 |
x24 - 53x20 + 2631x16 - 9432x12 + 31631x8 - 178x4 + 1 |
\( 2^{48}\cdot 3^{12}\cdot 13^{16} \) |
$C_2^2\times C_6$ (as 24T3) |
$[39]$
(GRH)
|
| 24.0.115005191066819204356102017148681640625.1 |
x24 + 117x18 + 9593x12 + 479232x6 + 16777216 |
\( 3^{36}\cdot 5^{12}\cdot 11^{12} \) |
$C_2^2\times C_6$ (as 24T3) |
$[42]$
(GRH)
|
| 24.0.127338577759142414150270976000000000000.1 |
x24 + 126x20 + 3567x16 + 9016x12 + 5607x8 + 483x4 + 1 |
\( 2^{48}\cdot 3^{32}\cdot 5^{12} \) |
$C_2^2\times C_6$ (as 24T3) |
$[3, 21]$
(GRH)
|
| 24.0.139797235388174693456489443830128457441.1 |
x24 - x23 - 16x22 + 3x21 + 149x20 + 37x19 - 1193x18 - 69x17 + 7413x16 + 720x15 - 31749x14 - 13113x13 + 108739x12 + 26266x11 - 278496x10 + 31368x9 + 472592x8 + 29088x7 - 422464x6 - 248960x5 + 287488x4 + 71680x3 - 27648x2 + 6144x + 4096 |
\( 3^{12}\cdot 7^{12}\cdot 13^{20} \) |
$C_2^2\times C_6$ (as 24T3) |
$[14]$
(GRH)
|
| 24.0.142764915949024053774865343014036832256.1 |
x24 - 34x21 + 993x18 - 13006x15 + 105407x12 + 293680x9 + 434872x6 - 10176x3 + 64 |
\( 2^{36}\cdot 3^{36}\cdot 7^{12} \) |
$C_2^2\times C_6$ (as 24T3) |
$[3, 6]$
(GRH)
|
| 24.0.142764915949024053774865343014036832256.2 |
x24 - 22x21 + 25x18 - 10306x15 + 212961x12 + 48088x9 + 7144x6 + 832x3 + 64 |
\( 2^{36}\cdot 3^{36}\cdot 7^{12} \) |
$C_2^2\times C_6$ (as 24T3) |
$[39]$
(GRH)
|
| 24.0.173690395826049922758414336000000000000.1 |
x24 + 27x22 + 319x20 + 2149x18 + 8972x16 + 23396x14 + 35678x12 + 24935x10 - 3091x8 - 25424x6 - 71174x4 - 54588x2 + 177241 |
\( 2^{24}\cdot 3^{12}\cdot 5^{12}\cdot 7^{20} \) |
$C_2^2\times C_6$ (as 24T3) |
$[2, 156]$
(GRH)
|
| 24.24.173690395826049922758414336000000000000.1 |
x24 - 33x22 + 429x20 - 2856x18 + 10762x16 - 24144x14 + 33158x12 - 28065x10 + 14404x8 - 4284x6 + 676x4 - 48x2 + 1 |
\( 2^{24}\cdot 3^{12}\cdot 5^{12}\cdot 7^{20} \) |
$C_2^2\times C_6$ (as 24T3) |
Trivial
(GRH)
|
| 24.0.173690395826049922758414336000000000000.2 |
x24 + 15x22 + 133x20 + 776x18 + 3338x16 + 10696x14 + 26174x12 + 46879x10 + 38660x8 - 35932x6 + 126028x4 + 666072x2 + 707281 |
\( 2^{24}\cdot 3^{12}\cdot 5^{12}\cdot 7^{20} \) |
$C_2^2\times C_6$ (as 24T3) |
$[2, 52]$
(GRH)
|
| 24.0.173690395826049922758414336000000000000.3 |
x24 + 7x22 + 33x20 + 119x18 + 305x16 + 231x14 - 3263x12 + 3696x10 + 78080x8 + 487424x6 + 2162688x4 + 7340032x2 + 16777216 |
\( 2^{24}\cdot 3^{12}\cdot 5^{12}\cdot 7^{20} \) |
$C_2^2\times C_6$ (as 24T3) |
$[2, 52]$
(GRH)
|