Learn more about

Further refine search

Results (displaying all 31 matches)

Label Polynomial Discriminant Galois group Class group
21.3.7174552902718171733819392.1 x21 - 7x20 + 21x19 - 42x18 + 77x17 - 126x16 + 168x15 - 213x14 + 266x13 - 280x12 + 259x11 - 217x10 + 133x9 - 42x8 - 53x7 + 126x6 - 112x5 + 7x4 + 63x3 - 49x2 + 14x - 1 \( -\,2^{18}\cdot 7^{23} \) $F_7$ (as 21T4) Trivial (GRH)
21.3.9284127557257563917891699.1 x21 - 5x20 + 11x19 - 13x18 + 7x17 + 4x16 - 16x15 + 13x14 - 6x13 + 2x12 - 2x11 + 21x10 - 28x8 + 29x7 - 16x6 - 18x5 + 17x4 - 9x3 - 2x2 + 3x - 1 \( -\,11^{9}\cdot 13^{14} \) $F_7$ (as 21T4) Trivial (GRH)
21.3.378818692265664781682717625943.3 x21 - x14 - 9x7 + 1 \( -\,7^{35} \) $F_7$ (as 21T4) Trivial (GRH)
21.21.94142881806955162927406195366237.1 x21 - 31x19 - 3x18 + 362x17 + 32x16 - 2119x15 - 158x14 + 6826x13 + 676x12 - 12509x11 - 2021x10 + 12809x9 + 3175x8 - 6710x7 - 2254x6 + 1442x5 + 571x4 - 97x3 - 44x2 + 2x + 1 \( 7^{14}\cdot 173^{9} \) $F_7$ (as 21T4) Trivial (GRH)
21.21.2406787169604002863343075235725312.1 x21 - 2x20 - 32x19 + 51x18 + 432x17 - 473x16 - 3214x15 + 1767x14 + 14108x13 - 305x12 - 35382x11 - 15763x10 + 43350x9 + 37753x8 - 14531x7 - 24311x6 - 2788x5 + 4492x4 + 1052x3 - 276x2 - 56x + 8 \( 2^{27}\cdot 7^{14}\cdot 31^{9} \) $F_7$ (as 21T4) Trivial (GRH)
21.3.26160559119874379648562947375700703.2 x21 - 7x20 + 21x19 - 34x18 + 29x17 - 32x16 + 201x15 - 718x14 + 847x13 + 988x12 - 1701x11 - 6256x10 + 18797x9 - 15492x8 - 45562x7 + 150977x6 - 83972x5 - 198072x4 + 215936x3 + 70896x2 - 133952x + 19264 \( -\,7^{17}\cdot 13^{18} \) $F_7$ (as 21T4) Trivial (GRH)
21.3.48958786234221774012025092444897160075327.1 x21 - 7x20 + 21x19 - 34x18 + 29x17 + 52x16 - 373x15 + 248x14 - 3577x13 + 42918x12 - 170639x11 + 225822x10 + 43556x9 + 105237x8 - 3230632x7 + 5161290x6 + 1287601x5 + 2320101x4 - 14827477x3 + 4310250x2 + 1634962x + 569387 \( -\,7^{17}\cdot 29^{18} \) $F_7$ (as 21T4) $[7, 7]$ (GRH)
21.3.24933089799576296242287986136979936417017847.1 x21 - 7x20 + 21x19 - 34x18 + 316x17 - 375x16 + 5x15 - 1019x14 + 20797x13 + 115088x12 + 265993x11 + 283880x10 + 220817x9 + 3096540x8 + 13444516x7 + 20299735x6 - 8975624x5 - 86530794x4 - 152378359x3 - 129757565x2 - 50056244x - 6446237 \( -\,7^{17}\cdot 41^{18} \) $F_7$ (as 21T4) Trivial (GRH)
21.3.58762312802028807390251370834685864006539343.1 x21 - 7x20 + 21x19 - 34x18 + 330x17 - 2629x16 + 9945x15 - 21697x14 + 61691x13 - 337490x12 + 1367751x11 - 3880770x10 + 9707987x9 - 27063618x8 + 86251922x7 - 249930855x6 + 516125610x5 - 636836088x4 + 367896053x3 + 18430223x2 - 116740442x + 35136283 \( -\,7^{17}\cdot 43^{18} \) $F_7$ (as 21T4) $[7]$ (GRH)
21.3.42600210199743647641790494093640979042918020345647.1 x21 - 2067x14 - 766753x7 - 62748517 \( -\,7^{35}\cdot 13^{18} \) $F_7$ (as 21T4) Trivial (GRH)
21.3.42600210199743647641790494093640979042918020345647.2 x21 - 2171x14 + 1219335x7 - 62748517 \( -\,7^{35}\cdot 13^{18} \) $F_7$ (as 21T4) Trivial (GRH)
21.3.42600210199743647641790494093640979042918020345647.3 x21 - 325x14 - 221897x7 + 62748517 \( -\,7^{35}\cdot 13^{18} \) $F_7$ (as 21T4) $[2, 2, 2]$ (GRH)
21.3.2099320095095383219362534880897373365668616194446503.1 x21 - 7x20 + 21x19 - 34x18 + 29x17 + 3384x16 - 22661x15 + 85004x14 - 409885x13 - 188418x12 - 2604021x11 - 6603224x10 + 30173537x9 - 75034142x8 - 399264676x7 + 477537789x6 + 583377214x5 - 1978514300x4 + 979864648x3 + 3374286608x2 - 5170051936x + 2015987008 \( -\,7^{17}\cdot 113^{18} \) $F_7$ (as 21T4) $[7]$ (GRH)
21.3.17184371679714375406342276014583508152741413197410183.1 x21 - 7x20 + 21x19 - 34x18 - 860x17 + 4693x16 - 12259x15 - 14067x14 + 37681x13 - 3477004x12 + 389109x11 + 23235788x10 - 37794391x9 + 399984668x8 + 105257496x7 - 6303984553x6 + 3887930312x5 + 9054965094x4 - 95684899751x3 + 28879725259x2 + 175769815592x - 322494640909 \( -\,7^{17}\cdot 127^{18} \) $F_7$ (as 21T4) $[7]$ (GRH)
21.3.2374450721934441204800704599474362981402341385467744663.1 x21 - 7x20 + 21x19 - 34x18 + 29x17 - 9692x16 + 37133x15 - 111234x14 - 306733x13 + 2227436x12 - 15927429x11 + 48390428x10 - 36546963x9 - 117158588x8 - 3295825882x7 + 13211621361x6 - 7267451240x5 - 59139292492x4 + 73337235104x3 + 87604194608x2 - 76802664064x - 146043093056 \( -\,7^{17}\cdot 167^{18} \) $F_7$ (as 21T4) Trivial (GRH)
21.3.79725153240997641482803881969926742124712205514640391823.1 x21 - 25955x14 - 81483649x7 - 17249876309 \( -\,7^{35}\cdot 29^{18} \) $F_7$ (as 21T4) $[7]$ (GRH)
21.3.159864073705644817826866721926705417106647399937729252767.1 x21 - 7x20 + 21x19 - 34x18 + 29x17 + 12232x16 - 36395x15 + 28738x14 - 856933x13 - 5891416x12 + 24379691x11 - 5679616x10 + 73289981x9 - 350840512x8 - 12471465894x7 + 5267658761x6 + 83230171864x5 + 22083422172x4 - 43889160896x3 - 214646951456x2 - 858652083072x + 745947224512 \( -\,7^{17}\cdot 211^{18} \) $F_7$ (as 21T4) $[7, 7, 7]$ (GRH)
21.3.432667441118225293081744612251055070987538949548395174983.1 x21 - 7x20 + 21x19 - 34x18 + 29x17 - 6696x16 + 39331x15 - 66028x14 - 967981x13 + 7864242x12 - 17206833x11 - 16939676x10 + 352134365x9 - 809756522x8 - 16153054924x7 + 78811833717x6 + 8157442846x5 - 535267042184x4 + 402334865128x3 + 1100178148832x2 - 2037042160384x - 256310093312 \( -\,7^{17}\cdot 223^{18} \) $F_7$ (as 21T4) Trivial (GRH)
21.3.3637421813338787913991133669958840202605967577382248356207.1 x21 - 7x20 + 21x19 - 34x18 - 1728x17 + 8277x16 - 26511x15 + 228637x14 - 2299843x13 + 43252952x12 - 358447607x11 + 1629066924x10 - 4992150763x9 + 6624085180x8 - 9335801376x7 + 136223349179x6 - 270952034724x5 + 131571710354x4 - 3552798817939x3 + 6818751637159x2 + 1165451658700x + 7016855542291 \( -\,7^{17}\cdot 251^{18} \) $F_7$ (as 21T4) $[2, 2, 2]$ (GRH)
21.3.58922863816834248701730948403017453588761267745332101431343.1 x21 - 7x20 + 21x19 - 34x18 + 29x17 - 17000x16 + 76879x15 + 25168x14 - 3960985x13 - 7944166x12 + 40651037x11 + 81259502x10 - 506512648x9 - 2778664855x8 - 84195862092x7 + 400745644202x6 + 655623718393x5 - 7349761489371x4 + 529795117999x3 + 53152215171034x2 - 12893672008602x - 131863811763929 \( -\,7^{17}\cdot 293^{18} \) $F_7$ (as 21T4) $[7, 7]$ (GRH)
21.3.95689349211490968068273743174738670497010473255536509295007.1 x21 - 89483x14 + 103438607x7 + 271818611107 \( -\,7^{35}\cdot 43^{18} \) $F_7$ (as 21T4) $[7]$ (GRH)
21.3.6055813052022442741267437386720431302520208823407199686319727.1 x21 - 7x20 + 21x19 - 34x18 + 5335x17 - 68226x16 + 370487x15 - 976238x14 + 9992983x13 - 167147434x12 + 1254295567x11 - 5119024426x10 + 16406088995x9 - 124794841242x8 + 1235524808890x7 - 7765632654107x6 + 28259771083054x5 - 48713312542188x4 - 12644866212328x3 + 193183257790096x2 - 276127419440096x + 122588921675584 \( -\,7^{17}\cdot 379^{18} \) $F_7$ (as 21T4) $[7, 7, 7, 7, 7]$ (GRH)
21.3.639931573735145678269077305601948179707569066438710730266948047.1 x21 - 7x20 + 21x19 - 34x18 + 29x17 + 42220x16 - 238849x15 + 507776x14 - 9461221x13 + 30949290x12 - 118397153x11 + 849128436x10 + 3360629141x9 - 17534305986x8 - 639064890904x7 - 84897810087x6 + 8605795373014x5 + 21486789774576x4 - 76273061749528x3 - 178475909056704x2 + 177581658222976x + 629094860366336 \( -\,7^{17}\cdot 491^{18} \) $F_7$ (as 21T4) n/a
21.3.2803860759981050190158681909505960217064638670151364262388173263.1 x21 - 7x20 + 21x19 - 34x18 + 29x17 + 30908x16 - 227299x15 + 331614x14 - 11256581x13 - 100744748x12 + 250586819x11 - 1122038804x10 + 8083253229x9 - 7342418196x8 - 1136578032834x7 + 596900678473x6 + 16991239839504x5 - 27591656221276x4 - 9543020500384x3 + 370902066797360x2 - 862711219086080x - 660800505832768 \( -\,7^{17}\cdot 13^{18}\cdot 41^{18} \) $F_7$ (as 21T4) $[14, 14, 14]$ (GRH)
21.3.13238447676394874558196094904430889210811997401754826436629096687.1 x21 - 57851x14 + 30304711x7 + 27136050989627 \( -\,7^{35}\cdot 83^{18} \) $F_7$ (as 21T4) n/a
21.3.24344854108509137895346177549498986990410149857662202745929382807.1 x21 - 7x20 + 21x19 - 34x18 + 29x17 - 34864x16 - 57451x15 + 891810x14 - 16216613x13 + 111348616x12 - 1168389061x11 + 7475278120x10 - 2937883611x9 - 48950465208x8 - 1285942710366x7 + 6911521990801x6 - 1175582555784x5 - 35643871943428x4 - 19183703267008x3 - 9595175213344x2 - 215779097824640x - 84881631489088 \( -\,7^{17}\cdot 601^{18} \) $F_7$ (as 21T4) n/a
21.3.39066061807525750900462785203767943376542499971141582990405683063.1 x21 - 7x20 + 21x19 - 34x18 + 29x17 + 53056x16 - 387753x15 + 1715360x14 - 20945477x13 - 106972970x12 - 574361697x11 - 3215159260x10 + 18233746589x9 - 44219027574x8 - 1367906097928x7 - 307347689851x6 + 10689969421306x5 - 11010699170856x4 - 17385833768968x3 + 157072709296608x2 - 428208522920192x + 293698546559488 \( -\,7^{17}\cdot 617^{18} \) $F_7$ (as 21T4) n/a
21.3.2057504513883865290828006783622225388610315551093969843772003838087.1 x21 - 7x20 + 21x19 - 34x18 + 29x17 - 66140x16 + 197181x15 + 519746x14 - 38250611x13 + 728885410x12 - 5190026793x11 + 29182239326x10 - 68615906434x9 + 126081016179x8 - 6211611183364x7 + 23232341812268x6 + 42625508333359x5 + 56176184509851x4 - 383224347675253x3 - 3177193347653934x2 - 1410935175422024x + 6295917838747831 \( -\,7^{17}\cdot 769^{18} \) $F_7$ (as 21T4) n/a
21.3.27983264514794111999474435672403673823086010489813254087627154702167.1 x21 - 1173353x14 - 82982043713x7 - 532875860165503 \( -\,7^{35}\cdot 127^{18} \) $F_7$ (as 21T4) n/a
21.3.698659295573481696443702685323246063670561579560848034212460416254103.1 x21 - 7x20 + 21x19 - 34x18 + 29x17 - 150952x16 + 1091081x15 - 1885902x14 - 82474679x13 + 1782947986x12 - 8271270553x11 + 14713958422x10 + 36609721794x9 - 157374528081x8 - 29032774648716x7 + 146378771353312x6 + 403041892117935x5 - 1511275454987137x4 + 2913800887665479x3 - 25119733760908906x2 - 90692100544127768x + 135973981979723027 \( -\,7^{17}\cdot 1063^{18} \) $F_7$ (as 21T4) n/a
21.3.14693654444550188334618410219169833396067319235696680397949255095300047.1 x21 - 7x20 + 21x19 - 34x18 + 29x17 - 214036x16 + 1591903x15 - 8455612x14 - 78804229x13 + 2442806710x12 - 18581839787x11 + 108000335718x10 - 222335916920x9 + 284300561201x8 - 44833968691560x7 + 248434219855942x6 + 39614286391869x5 - 1260636204184623x4 + 2502989432053803x3 - 12369631255580718x2 - 62218052737609482x - 26412654578702301 \( -\,7^{17}\cdot 1259^{18} \) $F_7$ (as 21T4) n/a


Download all search results for