Learn more about

Further refine search

Results (displaying matches 1-50 of 89) Next

Label Polynomial Discriminant Galois group Class group
21.1.34154868120917133312000000000.1 x21 - 10x18 + 36x15 - 76x12 - 224x9 - 144x6 - 32x3 - 16 \( 2^{20}\cdot 3^{34}\cdot 5^{9} \) $S_3\times F_7$ (as 21T15) Trivial (GRH)
21.1.7083212072929370650536855994368.1 x21 - 18x18 + 90x15 - 108x12 + 432x9 + 1296x6 - 216x3 + 864 \( 2^{26}\cdot 3^{27}\cdot 7^{12} \) $S_3\times F_7$ (as 21T15) Trivial (GRH)
21.3.374031156573051227998849803993088.1 x21 - 6x20 + x19 + 53x18 - 27x17 - 293x16 - 9x15 + 1527x14 + 243x13 - 5106x12 - 1574x11 + 12477x10 + 3557x9 - 22537x8 + 2995x7 + 24604x6 - 19343x5 - 8523x4 + 22177x3 - 14282x2 + 4522x - 290 \( -\,2^{14}\cdot 7^{15}\cdot 37^{10} \) $S_3\times F_7$ (as 21T15) Trivial (GRH)
21.1.2322524889444393135652695649026048.1 x21 - 7x20 + 11x19 - x18 + 29x17 - 31x16 - 207x15 + 283x14 + 178x13 - 774x12 + 1676x11 - 1948x10 - 1140x9 + 7012x8 - 10652x7 + 6060x6 + 7976x5 - 23032x4 + 27464x3 - 19144x2 + 7592x - 1352 \( 2^{33}\cdot 3^{19}\cdot 7^{17} \) $S_3\times F_7$ (as 21T15) $[3]$ (GRH)
21.1.6126396525391100008339733920874496.1 x21 - 2 \( 2^{20}\cdot 3^{21}\cdot 7^{21} \) $S_3\times F_7$ (as 21T15) Trivial (GRH)
21.3.55599491807759182102966212420960256.1 x21 - 144x14 - 106x7 + 2 \( -\,2^{20}\cdot 7^{21}\cdot 37^{7} \) $S_3\times F_7$ (as 21T15) Trivial (GRH)
21.1.297767057903624960000000000000000000.1 x21 + 21x19 - 2x18 + 209x17 - 26x16 + 1081x15 - 450x14 + 2345x13 - 2990x12 - 107x11 - 5360x10 - 1817x9 + 13424x8 + 28897x7 + 59776x6 + 72068x5 + 63024x4 + 32992x3 + 7616x2 + 576x + 64 \( 2^{26}\cdot 5^{19}\cdot 7^{17} \) $S_3\times F_7$ (as 21T15) $[3]$ (GRH)
21.1.301059380309170415238823998755176448.1 x21 - 68x14 + 1294x7 + 32 \( 2^{33}\cdot 7^{21}\cdot 13^{7} \) $S_3\times F_7$ (as 21T15) Trivial (GRH)
21.7.17715608156920361474020168853580939264.1 x21 - 2x20 + 4x19 + 70x18 - 226x17 - 406x16 + 1741x15 - 48x14 - 4521x13 + 7056x12 - 14691x11 + 29502x10 - 17641x9 - 46606x8 + 128156x7 - 152086x6 + 57937x5 + 104248x4 - 179097x3 + 119110x2 - 36110x + 3596 \( -\,2^{36}\cdot 3^{18}\cdot 13^{16} \) $S_3\times F_7$ (as 21T15) Trivial (GRH)
21.1.20371841277193344052610353606982956821.1 x21 - 3 \( 3^{41}\cdot 7^{21} \) $S_3\times F_7$ (as 21T15) Trivial (GRH)
21.7.419106148260412830400407432145473110016.1 x21 - 6x20 + 6x19 + 14x18 + 117x17 - 756x16 + 993x15 - 72x14 + 5994x13 - 27152x12 + 37740x11 - 31386x10 + 134624x9 - 240930x8 + 143181x7 + 237822x6 - 396504x5 + 2869290x4 - 6027167x3 - 6344232x2 + 4802307x + 1646714 \( -\,2^{30}\cdot 3^{27}\cdot 13^{15} \) $S_3\times F_7$ (as 21T15) Trivial (GRH)
21.1.340301188777014871770941836751902415781888.1 x21 - 336x14 + 28320x7 - 15552 \( 2^{18}\cdot 3^{19}\cdot 7^{15}\cdot 113^{7} \) $S_3\times F_7$ (as 21T15) Trivial (GRH)
21.1.557192518080328228128540460681915283203125.1 x21 - 5 \( 3^{21}\cdot 5^{20}\cdot 7^{21} \) $S_3\times F_7$ (as 21T15) Trivial (GRH)
21.1.21361423839074287933309954143795760931536896.1 x21 - 6 \( 2^{20}\cdot 3^{41}\cdot 7^{21} \) $S_3\times F_7$ (as 21T15) Trivial (GRH)
21.1.466193259238025221575869415718789708563776421.1 x21 - 7 \( 3^{21}\cdot 7^{41} \) $S_3\times F_7$ (as 21T15) $[3]$ (GRH)
21.21.2137431244633054651040398357581563904000000000.1 x21 - 56x19 + 1148x17 - 11256x15 - 1008x14 + 59584x13 + 12838x12 - 178752x11 - 58604x10 + 304976x9 + 120344x8 - 290570x7 - 117992x6 + 148176x5 + 54880x4 - 35672x3 - 10976x2 + 2744x + 686 \( 2^{20}\cdot 3^{9}\cdot 5^{9}\cdot 7^{21}\cdot 37^{7} \) $S_3\times F_7$ (as 21T15) Trivial (GRH)
21.21.2988294641754081422729557568579911620000628736.1 x21 - 4x20 - 53x19 + 209x18 + 1073x17 - 4189x16 - 10781x15 + 42311x14 + 57491x13 - 234064x12 - 159236x11 + 723175x10 + 196667x9 - 1249345x8 + 3415x7 + 1186026x6 - 243705x5 - 565919x4 + 208315x3 + 98094x2 - 53928x + 4514 \( 2^{14}\cdot 7^{12}\cdot 37^{7}\cdot 173^{9} \) $S_3\times F_7$ (as 21T15) Trivial (GRH)
21.1.11841910006204867301303769538659846667225792512.1 x21 - 7x20 + 28x19 - 140x18 + 539x17 - 1589x16 + 5208x15 - 14550x14 + 33726x13 - 85652x12 + 199136x11 - 392630x10 + 782026x9 - 779296x8 + 517684x7 - 1556478x6 + 6082125x5 - 9280761x4 + 10378536x3 - 3684954x2 + 2233119x - 4362447 \( 2^{26}\cdot 3^{19}\cdot 7^{21}\cdot 43^{7} \) $S_3\times F_7$ (as 21T15) Trivial (GRH)
21.1.96191904229042724857909956685420452170151493632.1 x21 - 7x20 + 7x19 + 91x18 - 343x17 - 35x16 + 2793x15 - 5271x14 - 6174x13 + 36862x12 - 49252x11 - 16100x10 + 47152x9 + 564704x8 - 1702904x7 + 1927968x6 - 1988448x5 + 2003568x4 - 677040x3 + 1010352x2 - 1193808x + 348528 \( 2^{33}\cdot 3^{19}\cdot 7^{21}\cdot 29^{7} \) $S_3\times F_7$ (as 21T15) Trivial (GRH)
21.3.990506497724182757810432716022494243247764430389248.1 x21 - 7x20 - 21x19 + 231x18 + 77x17 - 3255x16 + 1701x15 + 25169x14 - 22890x13 - 120750x12 + 153188x11 + 167748x10 - 63896x9 - 667016x8 + 650208x7 - 1194704x6 + 2329152x5 + 2944032x4 - 4262720x3 - 9240448x2 + 9202368x + 7854656 \( -\,2^{33}\cdot 3^{18}\cdot 7^{21}\cdot 127^{7} \) $S_3\times F_7$ (as 21T15) Trivial (GRH)
21.1.52000321857243010504353469003759985000000000000000000.1 x21 - 7x20 - 21x19 + 329x18 - 511x17 - 5313x16 + 22673x15 + 17861x14 - 305914x13 + 484596x12 + 1641416x11 - 6850424x10 + 2950976x9 + 28662816x8 - 56752004x7 - 29714272x6 + 268519692x5 - 350328916x4 - 99703156x3 + 680126244x2 - 678292132x + 258383116 \( 2^{18}\cdot 5^{19}\cdot 7^{21}\cdot 211^{7} \) $S_3\times F_7$ (as 21T15) $[2]$ (GRH)
21.1.2779674387135021652740220623564472320000000000000000000.1 x21 + 21x19 - 438x18 - 4161x17 + 6876x16 - 19449x15 - 180030x14 - 2020725x13 - 25576020x12 - 53377557x11 - 224961030x10 + 334966533x9 - 10903896024x8 - 28494481803x7 - 139865038686x6 - 209353969512x5 - 2909582113104x4 - 4534363813248x3 - 30425924350656x2 - 23356753720704x - 82620315048384 \( 2^{33}\cdot 3^{19}\cdot 5^{19}\cdot 7^{17}\cdot 13^{7} \) $S_3\times F_7$ (as 21T15) n/a
21.3.10651197913197001533908982295691974846616400750079639552.1 x21 - 32144x14 + 10493280x7 + 34420736 \( -\,2^{33}\cdot 7^{40}\cdot 41^{7} \) $S_3\times F_7$ (as 21T15) Trivial (GRH)
21.1.185083894086285956343696257354334893311234724948971880448.1 x21 + 49x19 - 98x18 + 1029x17 - 4116x16 + 16121x15 - 62238x14 + 228095x13 - 1568000x12 + 12925563x11 + 8335586x10 - 73278177x9 + 670558140x8 + 627665995x7 + 589911294x6 + 5927602716x5 - 8314660648x4 + 54391211280x3 + 136118128608x2 + 13796853952x + 3093525184 \( 2^{33}\cdot 3^{18}\cdot 7^{17}\cdot 17^{19} \) $S_3\times F_7$ (as 21T15) n/a
21.1.254715392223928332796590537567913082880000000000000000000.1 x21 - 7x20 - 189x19 + 2359x18 + 8981x17 - 277431x16 + 789901x15 + 14121359x14 - 113584254x13 - 128880486x12 + 5222680680x11 - 18571849464x10 - 79222959900x9 + 812925249780x8 - 1456671621720x7 - 10017806215788x6 + 60981098550876x5 - 83034819969948x4 - 384001652308932x3 + 1982371881158172x2 - 3793231674684900x + 2927357027960148 \( 2^{33}\cdot 3^{18}\cdot 5^{19}\cdot 7^{17}\cdot 29^{7} \) $S_3\times F_7$ (as 21T15) $[3]$ (GRH)
21.3.272003771615891296889203394410244273958868413695405064192.1 x21 - 633864x14 - 98737629144x7 - 2130887864952 \( -\,2^{18}\cdot 3^{19}\cdot 7^{17}\cdot 11^{19}\cdot 13^{7} \) $S_3\times F_7$ (as 21T15) n/a
21.1.2850782826128958048988669116723104997174540074367395561472.1 x21 - 7x20 + 7x19 + 427x18 - 2359x17 + 973x16 + 76713x15 - 322251x14 - 51030x13 + 7422478x12 - 25300156x11 - 7171388x10 + 387981832x9 - 261657928x8 - 2718060368x7 + 14603743728x6 - 41439308064x5 + 7269519264x4 + 196647632832x3 - 9805798464x2 - 433958835072x + 1329014280576 \( 2^{33}\cdot 3^{18}\cdot 7^{21}\cdot 1063^{7} \) $S_3\times F_7$ (as 21T15) n/a
21.1.7768946935337343279213431536688153817536377176369532239872.1 x21 - 7x20 + 217x19 - 1039x18 + 16265x17 - 67195x16 + 673467x15 - 3262297x14 + 21564242x13 - 95264182x12 + 490225342x11 - 1802769584x10 + 6308769536x9 - 10492301162x8 + 9691332318x7 + 120179963920x6 - 363434677664x5 + 861500572256x4 + 287175699584x3 - 2226072324992x2 + 4588789081088x - 3290030542336 \( 2^{18}\cdot 7^{17}\cdot 17^{19}\cdot 127^{7} \) $S_3\times F_7$ (as 21T15) n/a
21.1.1202090336315934431360526607958288705617920000000000000000000.1 x21 - 9x20 + 30x19 + 810x18 + 7665x17 + 145539x16 - 1157136x15 + 22352700x14 + 59486130x13 + 1036911690x12 + 12604874796x11 - 4048247664x10 + 1332478142730x9 + 705666957930x8 + 52060322671200x7 + 11992532164164x6 + 1519304409798669x5 + 1226053598985135x4 + 22310247806481510x3 + 4304090964183750x2 + 204438880713856581x + 48239717281463331 \( 2^{33}\cdot 3^{19}\cdot 5^{19}\cdot 7^{17}\cdot 83^{7} \) $S_3\times F_7$ (as 21T15) n/a
21.1.3988584188566184927712460097535808514732885044093734132645888.1 x21 - 7x20 + 112x19 - 644x18 + 5327x17 - 25445x16 + 141288x15 - 561156x14 + 2291226x13 - 7649978x12 + 24182648x11 - 60738860x10 + 134840062x9 - 263747806x8 + 513894856x7 - 611271612x6 + 815747877x5 + 952919793x4 + 211758120x3 + 7341777072x2 - 4043917773x + 14403261843 \( 2^{33}\cdot 3^{19}\cdot 7^{40}\cdot 13^{7} \) $S_3\times F_7$ (as 21T15) n/a
21.1.5596800126330048398179365787435248523182080000000000000000000.1 x21 - 660x14 + 22192610x7 + 133100000 \( 2^{33}\cdot 5^{19}\cdot 7^{21}\cdot 11^{19} \) $S_3\times F_7$ (as 21T15) n/a
21.1.9388410490242195341432275672675535918039385773886516991623168.1 x21 - 7x20 + 203x19 - 1463x18 + 18977x17 - 132097x16 + 1077041x15 - 6775769x14 + 40655986x13 - 220547236x12 + 1072325800x11 - 4567524416x10 + 17184792352x9 - 56921931136x8 + 196394111312x7 - 511010249400x6 + 1425798699360x5 - 1876730026416x4 + 4969555055472x3 + 2779476929040x2 + 5617933981296x + 22093742653584 \( 2^{18}\cdot 3^{18}\cdot 7^{17}\cdot 13^{19}\cdot 43^{7} \) $S_3\times F_7$ (as 21T15) n/a
21.1.20714269215444879542778783404872527378677760000000000000000000.1 x21 - 7x20 - 49x19 + 539x18 + 161x17 - 16051x16 + 38241x15 + 209059x14 - 1086554x13 - 407106x12 + 13782440x11 - 27422584x10 - 41136060x9 + 183654100x8 + 84516280x7 - 1385748588x6 + 3217907756x5 - 2441792668x4 - 4210424932x3 + 11145838172x2 - 7005312580x + 1393873588 \( 2^{33}\cdot 3^{19}\cdot 5^{19}\cdot 7^{21}\cdot 41^{7} \) $S_3\times F_7$ (as 21T15) n/a
21.1.7133386677177057321844488601370585790057054877370150192469245952.1 x21 - 7x20 + 63x19 - 273x18 + 1337x17 - 3927x16 + 13041x15 - 25267x14 + 60690x13 - 91518x12 + 119084x11 + 634284x10 - 845936x9 + 3003280x8 - 9539064x7 + 22197616x6 - 45490368x5 + 88338768x4 - 71119664x3 + 42161840x2 - 83922384x + 83379248 \( 2^{33}\cdot 3^{18}\cdot 7^{21}\cdot 11^{19}\cdot 13^{7} \) $S_3\times F_7$ (as 21T15) n/a
21.1.8697528010877856619486913745558327692042564236100084428584255488.1 x21 - 133x19 - 602x18 + 7581x17 + 68628x16 - 84749x15 - 3258486x14 - 10193785x13 + 60618320x12 + 517592649x11 + 529827578x10 - 8204305753x9 - 35791605276x8 - 5603826919x7 + 479101024822x6 + 1888661691252x5 + 1078888675256x4 - 11182890702928x3 - 34923249923744x2 - 50824408657344x - 35473411152832 \( 2^{33}\cdot 7^{40}\cdot 769^{7} \) $S_3\times F_7$ (as 21T15) n/a
21.1.385299031450283695081389016328751512292325294080000000000000000000.1 x21 - 7x20 - 21x19 + 427x18 - 1099x17 - 7371x16 + 51877x15 - 28459x14 - 763602x13 + 2834454x12 - 3354876x11 - 12561948x10 - 9581544x9 + 867775608x8 - 2671533936x7 + 2861475120x6 - 10704143520x5 + 18597509280x4 + 4102539840x3 + 39186141120x2 - 60906867840x + 19907441280 \( 2^{33}\cdot 3^{19}\cdot 5^{19}\cdot 7^{21}\cdot 167^{7} \) $S_3\times F_7$ (as 21T15) n/a
21.1.515948419432548652795384693815714046409770106880000000000000000000.1 x21 - 7x20 - 91x19 + 1589x18 - 1981x17 - 101773x16 + 735063x15 + 1327111x14 - 39409664x13 + 144182136x12 + 739819136x11 - 7552096384x10 + 15950698176x9 + 59488601536x8 - 544613923904x7 + 574658074368x6 + 11837589381632x5 - 42702941725696x4 + 17265195121664x3 + 173123472026624x2 - 632942656095232x + 900920827165696 \( 2^{33}\cdot 3^{19}\cdot 5^{19}\cdot 7^{15}\cdot 13^{7}\cdot 71^{7} \) $S_3\times F_7$ (as 21T15) n/a
21.1.1842305049185776426372317709444210377390880236285000000000000000000.1 x21 - 7x20 + 56x19 - 161x18 + 581x17 + 434x16 - 1099x15 + 19159x14 + 8281x13 + 87794x12 + 966385x11 - 2665229x10 + 2983120x9 - 37440235x8 + 138040805x7 - 189202188x6 + 722578416x5 - 1035586608x4 + 1556164848x3 - 2269756608x2 + 1964250960x - 685324272 \( 2^{18}\cdot 3^{18}\cdot 5^{19}\cdot 7^{21}\cdot 13^{7}\cdot 83^{7} \) $S_3\times F_7$ (as 21T15) n/a
21.3.2225242853336768591507237143760594156154416824320000000000000000000.1 x21 - 304920x14 - 4098965310x7 - 1194393600000 \( -\,2^{33}\cdot 3^{18}\cdot 5^{19}\cdot 7^{21}\cdot 251^{7} \) $S_3\times F_7$ (as 21T15) n/a
21.1.2916867225003158090761647087922058466205473669120000000000000000000.1 x21 - 7x20 - 21x19 + 7x18 + 1421x17 + 1449x16 - 15323x15 - 108919x14 - 11802x13 + 1594194x12 + 12744564x11 - 28570668x10 + 56321496x9 + 938347368x8 - 2826925296x7 + 3242337840x6 + 33289250400x5 - 45591991200x4 - 23651409600x3 + 69480331200x2 + 7011849600x - 97809091200 \( 2^{33}\cdot 3^{19}\cdot 5^{19}\cdot 7^{21}\cdot 223^{7} \) $S_3\times F_7$ (as 21T15) n/a
21.1.3028868744050989768689551478105098411269081489345000000000000000000.1 x21 + 21x19 - 2268x18 + 189x17 - 40824x16 + 2205441x15 - 306090x14 + 33070275x13 - 1191655710x12 + 200655063x11 - 14287865130x10 + 386285674383x9 - 60913514214x8 + 3472200615087x7 - 75107387510946x6 + 11228678522208x5 - 449969373535374x4 + 8108854969694472x3 - 647042556248046x2 + 24293782425706416x - 374806423239554574 \( 2^{18}\cdot 3^{19}\cdot 5^{19}\cdot 7^{15}\cdot 29^{7}\cdot 181^{7} \) $S_3\times F_7$ (as 21T15) n/a
21.1.5408345795652875901935821111247961815379871355609667224052053311488.1 x21 - 7x20 + 56x19 - 112x18 + 287x17 + 2639x16 - 4872x15 + 28852x14 + 85498x13 + 65310x12 + 3879176x11 - 10560508x10 + 7001358x9 - 263126318x8 + 885880792x7 - 1200362772x6 + 6132900389x5 - 8618999431x4 + 13069935536x3 - 24705378292x2 + 23796592883x - 7883676593 \( 2^{26}\cdot 3^{19}\cdot 7^{21}\cdot 13^{7}\cdot 19^{19} \) $S_3\times F_7$ (as 21T15) n/a
21.1.13345529421114240689213311204151578981153204581639050292194699378688.1 x21 - 7x20 - 63x19 + 1057x18 - 1729x17 - 46977x16 + 316603x15 + 325961x14 - 11687256x13 + 39839016x12 + 136557204x11 - 1367972340x10 + 2516687964x9 + 11623314444x8 - 72186530568x7 + 66246386724x6 + 737941558788x5 - 2591283279564x4 + 1407559447980x3 + 9674836268076x2 - 28321950476484x + 29930107102308 \( 2^{18}\cdot 3^{19}\cdot 7^{40}\cdot 491^{7} \) $S_3\times F_7$ (as 21T15) n/a
21.1.23354215149520145770884611145212717381599630651700115392847547465728.1 x21 - 21173202x14 + 164940880734306x7 - 715092588417024 \( 2^{26}\cdot 3^{19}\cdot 7^{17}\cdot 23^{19}\cdot 29^{7} \) $S_3\times F_7$ (as 21T15) n/a
21.1.67074988669695514157661184969648385566174950359040000000000000000000.1 x21 - 7x20 - 49x19 + 119x18 + 2681x17 + 2849x16 - 59199x15 - 275051x14 + 372946x13 + 6005034x12 + 15049580x11 - 44208724x10 - 258483120x9 - 193560080x8 + 699630280x7 + 7646828112x6 + 21977505536x5 - 19136576368x4 - 106034214832x3 - 140692650448x2 - 190888547920x - 142292871632 \( 2^{33}\cdot 3^{19}\cdot 5^{19}\cdot 7^{21}\cdot 349^{7} \) $S_3\times F_7$ (as 21T15) n/a
21.1.1404290639202374964915097229751126656217933390186240000000000000000000.1 x21 - 8730x14 + 36455570370x7 - 2612138803200000 \( 2^{26}\cdot 3^{18}\cdot 5^{19}\cdot 7^{21}\cdot 13^{7}\cdot 97^{7} \) $S_3\times F_7$ (as 21T15) n/a
21.1.14064575590537072617183510833911332264598919604082378886625262816985088.1 x21 - 7x20 - 63x19 - 119x18 + 5327x17 + 20055x16 - 83237x15 - 1383859x14 - 2372160x13 + 24367560x12 + 187055820x11 + 145844244x10 - 2682084636x9 - 13682621484x8 - 12996844992x7 + 145289526228x6 + 753092808804x5 + 754915945140x4 - 2830120486452x3 - 14383246351572x2 - 29486874188772x - 30092867037324 \( 2^{26}\cdot 3^{19}\cdot 7^{40}\cdot 601^{7} \) $S_3\times F_7$ (as 21T15) n/a
21.1.16856743381788797964169462556045972312361821474422784000000000000000000.1 x21 + 77x19 - 14x18 + 2541x17 - 924x16 + 46669x15 - 24570x14 + 517055x13 - 480760x12 + 3613071x11 - 3850x10 + 11794727x9 - 4705764x8 + 41542631x7 + 118482154x6 + 57561084x5 + 954860816x4 + 1014152048x3 + 3747573928x2 - 813508752x + 5460680552 \( 2^{33}\cdot 5^{18}\cdot 7^{40}\cdot 97^{7} \) $S_3\times F_7$ (as 21T15) n/a
21.1.23799537214144544855987852949932308494594769678441899396662782058299392.1 x21 - 7x20 - 133x19 + 287x18 + 11501x17 + 22673x16 - 503307x15 - 2971235x14 + 7171822x13 + 123851322x12 + 289386524x11 - 1890715204x10 - 13338735312x9 - 15880653152x8 + 150044092120x7 + 784511093184x6 + 1150521936032x5 - 3757986589840x4 - 22166544339184x3 - 50296288035280x2 - 61556969399632x - 35029115785232 \( 2^{33}\cdot 3^{18}\cdot 7^{40}\cdot 379^{7} \) $S_3\times F_7$ (as 21T15) n/a
21.3.164741220697322129579481287495063613302478454386458880000000000000000000.1 x21 - 7x20 - 539x19 + 3745x18 + 123515x17 - 856121x16 - 15509193x15 + 108271479x14 + 1138001760x13 - 8161548500x12 - 47160362200x11 + 364571599000x10 + 889660452520x9 - 8783229793240x8 + 1697893096120x7 + 79566366868800x6 - 223602818989200x5 + 302507514834000x4 - 231401632434000x3 - 7218977715600x2 + 2011887049200x + 1281974857676400 \( -\,2^{26}\cdot 3^{19}\cdot 5^{19}\cdot 7^{21}\cdot 2129^{7} \) $S_3\times F_7$ (as 21T15) n/a
Next

Download all search results for