Learn more about

Further refine search

Results (displaying matches 1-50 of 1681) Next

Label Polynomial Discriminant Galois group Class group
20.4.18780357640955901417873.1 x20 - 2x19 + 3x17 - 9x16 + 20x15 - 26x14 + 19x13 - 5x12 - 8x11 + 42x10 - 89x9 + 94x8 - 76x7 + 75x6 - 64x5 + 33x4 - 14x3 + 6x2 - 1 \( 3^{8}\cdot 17^{15} \) $C_2\times F_5$ (as 20T9) Trivial
20.0.107192366147491455078125.1 x20 - 5x19 + 12x18 - 20x17 + 28x16 - 35x15 + 34x14 - 25x13 + 30x12 - 70x11 + 119x10 - 140x9 + 208x8 - 325x7 + 292x6 - 85x5 - 14x4 - 70x3 + 40x2 + 25x + 25 \( 5^{15}\cdot 37^{8} \) $C_2\times F_5$ (as 20T9) Trivial
20.0.200000000000000000000000.1 x20 - 5x19 + 10x18 - 10x17 + 10x16 - 25x15 + 40x14 - 25x13 + 40x12 - 200x11 + 515x10 - 850x9 + 1050x8 - 1075x7 + 1000x6 - 875x5 + 700x4 - 500x3 + 300x2 - 125x + 25 \( 2^{24}\cdot 5^{23} \) $C_2\times F_5$ (as 20T9) Trivial
20.4.774840978000000000000000.1 x20 - 2x18 - 3x17 - 9x16 - 12x15 - 12x14 + 18x13 + 84x12 + 132x11 + 174x10 + 198x9 + 177x8 + 120x7 + 42x6 + 27x5 + 48x4 + 12x3 - 8x2 + 3x + 1 \( 2^{16}\cdot 3^{18}\cdot 5^{15} \) $C_2\times F_5$ (as 20T9) Trivial
20.4.274968333542346954345703125.2 x20 - 48x15 + 449x10 + 1548x5 + 1 \( 3^{10}\cdot 5^{31} \) $C_2\times F_5$ (as 20T9) Trivial (GRH)
20.0.4503750781250000000000000000.1 x20 + 10x18 - 5x17 + 15x16 - 46x15 - 60x14 - 100x13 - 30x12 + 290x11 + 356x10 + 470x9 + 335x8 - 2190x7 + 490x6 - 2261x5 + 3950x4 - 1800x3 + 1630x2 - 1305x + 311 \( 2^{16}\cdot 5^{23}\cdot 7^{8} \) $C_2\times F_5$ (as 20T9) Trivial (GRH)
20.4.4882812500000000000000000000.1 x20 - 5x18 + 15x16 - 30x14 + 135x12 - 270x10 + 50x8 + 300x6 - 175x4 - 100x2 + 80 \( 2^{20}\cdot 5^{31} \) $C_2\times F_5$ (as 20T9) Trivial (GRH)
20.0.23376400555202000000000000000.1 x20 - 5x19 + 18x18 - 48x17 + 134x16 - 233x15 + 416x14 - 476x13 + 897x12 - 786x11 + 2316x10 - 854x9 + 4296x8 - 870x7 + 3820x6 + 110x5 + 565x4 - 125x3 + 50x2 + 50x + 25 \( 2^{16}\cdot 5^{15}\cdot 43^{8} \) $C_2\times F_5$ (as 20T9) Trivial (GRH)
20.4.169675210983039290802001953125.1 x20 - 8x19 + 20x18 + 5x17 - 139x16 + 320x15 - 74x14 - 1080x13 + 2051x12 - 150x11 - 4520x10 + 5643x9 + 946x8 - 9460x7 + 7095x6 + 4345x5 - 8140x4 + 1375x3 + 3025x2 + 275x + 275 \( 5^{15}\cdot 11^{18} \) $C_2\times F_5$ (as 20T9) $[5]$ (GRH)
20.4.1315377880819141864776611328125.1 x20 - 144x15 - 10889x10 + 259506x5 + 161051 \( 5^{31}\cdot 7^{10} \) $C_2\times F_5$ (as 20T9) Trivial (GRH)
20.4.5000000000000000000000000000000.1 x20 - 10x18 + 60x16 - 240x14 + 2160x12 - 8640x10 + 3200x8 + 38400x6 - 44800x4 - 51200x2 + 81920 \( 2^{30}\cdot 5^{31} \) $C_2\times F_5$ (as 20T9) Trivial (GRH)
20.0.5000000000000000000000000000000.4 x20 + 10x18 + 60x16 + 240x14 + 2160x12 + 8640x10 + 3200x8 - 38400x6 - 44800x4 + 51200x2 + 81920 \( 2^{30}\cdot 5^{31} \) $C_2\times F_5$ (as 20T9) $[2]$ (GRH)
20.20.10054202156858080231167941574353.1 x20 - x19 - 33x18 + 48x17 + 398x16 - 758x15 - 2109x14 + 5370x13 + 4019x12 - 18033x11 + 3882x10 + 25627x9 - 20370x8 - 8176x7 + 14111x6 - 2752x5 - 1888x4 + 657x3 + 22x2 - 17x + 1 \( 17^{15}\cdot 37^{8} \) $C_2\times F_5$ (as 20T9) Trivial (GRH)
20.20.18447363200000000000000000000000.1 x20 - 40x18 + 660x16 - 5800x14 + 29320x12 - 86420x10 + 145120x8 - 130160x6 + 55120x4 - 8800x2 + 80 \( 2^{28}\cdot 5^{23}\cdot 7^{8} \) $C_2\times F_5$ (as 20T9) Trivial (GRH)
20.4.82802905234194108120391845703125.1 x20 - 2x19 - 6x18 - 40x17 + 42x16 + 148x15 + 358x14 - 294x13 + 2428x12 + 12630x11 + 20819x10 - 35474x9 - 210554x8 - 467528x7 - 574374x6 - 350538x5 - 101396x4 + 9920x3 + 46712x2 + 22468x + 991 \( 3^{10}\cdot 5^{15}\cdot 11^{16} \) $C_2\times F_5$ (as 20T9) $[5]$ (GRH)
20.4.120780545291490852832794189453125.1 x20 - 294x15 - 64864x10 + 5348406x5 + 28629151 \( 5^{31}\cdot 11^{10} \) $C_2\times F_5$ (as 20T9) Trivial (GRH)
20.0.288325195312500000000000000000000.2 x20 + 15x18 + 135x16 + 810x14 + 10935x12 + 65610x10 + 36450x8 - 656100x6 - 1148175x4 + 1968300x2 + 4723920 \( 2^{20}\cdot 3^{10}\cdot 5^{31} \) $C_2\times F_5$ (as 20T9) $[2, 2]$ (GRH)
20.0.641953627807088196277618408203125.2 x20 - 144x15 + 9986x10 - 6429744x5 + 844596301 \( 5^{31}\cdot 13^{10} \) $C_2\times F_5$ (as 20T9) $[2]$ (GRH)
20.4.1470391355634309152000000000000000.2 x20 - 5x18 - 129x16 - 620x14 - 1509x12 - 2355x10 - 864x8 - 410x6 + 1401x4 + 2290x2 + 1805 \( 2^{20}\cdot 5^{15}\cdot 11^{16} \) $C_2\times F_5$ (as 20T9) $[5]$ (GRH)
20.4.3177714547665748337794219970703125.1 x20 - 2x19 - 10x18 - 20x17 - 14x16 + 380x15 + 116x14 + 2555x13 - 5209x12 + 7230x11 - 29195x10 + 50437x9 - 54804x8 + 151255x7 - 200155x6 + 184205x5 - 249815x4 + 320775x3 + 21600x2 - 35775x - 119475 \( 5^{15}\cdot 19^{18} \) $C_2\times F_5$ (as 20T9) Trivial (GRH)
20.0.9387703148876316845417022705078125.2 x20 - 5x19 + 25x18 - 35x17 + 270x16 - 919x15 + 4850x14 + 24400x13 + 158005x12 + 323200x11 + 240476x10 - 2451535x9 - 9806600x8 - 22103305x7 - 18499285x6 + 36486691x5 + 184536915x4 + 378693200x3 + 498508960x2 + 402067640x + 168988496 \( 5^{31}\cdot 17^{10} \) $C_2\times F_5$ (as 20T9) $[2]$ (GRH)
20.0.10019151533337487082567413330078125.2 x20 - 8x19 + 42x18 - 204x17 + 928x16 - 3530x15 + 12796x14 - 40207x13 + 115483x12 - 299394x11 + 694684x10 - 1456697x9 + 2707188x8 - 4255273x7 + 5598538x6 - 6354447x5 + 6400086x4 - 5497910x3 + 3643915x2 - 1608255x + 377245 \( 3^{10}\cdot 5^{15}\cdot 11^{18} \) $C_2\times F_5$ (as 20T9) $[2, 2, 10]$ (GRH)
20.4.28550002061766572296619415283203125.1 x20 - 5x19 - 10x18 + 225x17 - 835x16 + 623x15 + 9665x14 - 65095x13 + 212270x12 - 167595x11 - 1654471x10 + 6783670x9 - 12617985x8 - 6471845x7 + 95240190x6 - 35696808x5 - 334401910x4 + 81011030x3 + 520007480x2 - 283432920x + 293849141 \( 5^{31}\cdot 19^{10} \) $C_2\times F_5$ (as 20T9) Trivial (GRH)
20.0.77671748484489507973194122314453125.2 x20 - 5x19 + 30x18 - 50x17 + 430x16 - 1319x15 + 7885x14 + 40785x13 + 317315x12 + 799150x11 + 1072566x10 - 5300355x9 - 28263385x8 - 79891605x7 - 100137290x6 + 71914741x5 + 734798300x4 + 1874737995x3 + 2942848715x2 + 2827663210x + 1410941641 \( 3^{10}\cdot 5^{31}\cdot 7^{10} \) $C_2\times F_5$ (as 20T9) n/a
20.0.177917354031751407392000000000000000.2 x20 + 66x16 + 440x14 - 1749x12 + 10340x10 - 11374x8 - 21780x6 + 246961x4 - 350900x2 + 242000 \( 2^{20}\cdot 5^{15}\cdot 11^{18} \) $C_2\times F_5$ (as 20T9) $[2, 2, 10]$ (GRH)
20.4.192907225404162891209125518798828125.1 x20 - 5x19 - 15x18 + 280x17 - 945x16 + 198x15 + 14180x14 - 97645x13 + 351970x12 - 255555x11 - 3611196x10 + 14891330x9 - 27752675x8 - 29312330x7 + 303998195x6 - 85381863x5 - 1286617875x4 + 298330310x3 + 2109281000x2 - 1225863600x + 2214298096 \( 5^{31}\cdot 23^{10} \) $C_2\times F_5$ (as 20T9) n/a
20.4.295245000000000000000000000000000000.1 x20 - 30x18 + 540x16 - 6480x14 + 174960x12 - 2099520x10 + 2332800x8 + 83980800x6 - 293932800x4 - 1007769600x2 + 4837294080 \( 2^{30}\cdot 3^{10}\cdot 5^{31} \) $C_2\times F_5$ (as 20T9) n/a
20.0.295245000000000000000000000000000000.2 x20 + 30x18 + 540x16 + 6480x14 + 174960x12 + 2099520x10 + 2332800x8 - 83980800x6 - 293932800x4 + 1007769600x2 + 4837294080 \( 2^{30}\cdot 3^{10}\cdot 5^{31} \) $C_2\times F_5$ (as 20T9) n/a
20.4.396107830343483954099825714111328125.1 x20 - 3x19 - 25x18 + 85x17 + 390x16 - 619x15 - 3918x14 + 385x13 + 34925x12 + 29720x11 - 270083x10 - 443136x9 + 1143615x8 + 3870405x7 + 873000x6 - 14910222x5 - 18671249x4 + 17902740x3 + 5924040x2 - 41740760x + 18411920 \( 5^{15}\cdot 7^{10}\cdot 11^{16} \) $C_2\times F_5$ (as 20T9) $[5]$ (GRH)
20.4.519780793144362253735210235595703125.1 x20 - x19 + 9x18 - 41x17 + 154x16 - 773x15 + 2026x14 - 4929x13 + 12491x12 - 11134x11 - 15441x10 + 91658x9 - 228717x8 - 233197x7 + 1624938x6 - 1158742x5 - 2192037x4 + 3529578x3 - 2820992x2 + 2354928x - 261584 \( 3^{10}\cdot 5^{15}\cdot 19^{16} \) $C_2\times F_5$ (as 20T9) $[4, 4]$ (GRH)
20.0.1379273676757812500000000000000000000.2 x20 + 35x18 + 735x16 + 10290x14 + 324135x12 + 4537890x10 + 5882450x8 - 247062900x6 - 1008840175x4 + 4035360700x2 + 22598019920 \( 2^{20}\cdot 5^{31}\cdot 7^{10} \) $C_2\times F_5$ (as 20T9) n/a
20.4.1505680748169532571648000000000000000.1 x20 - 10x18 - 516x16 - 4960x14 - 24144x12 - 75360x10 - 55296x8 - 52480x6 + 358656x4 + 1172480x2 + 1848320 \( 2^{30}\cdot 5^{15}\cdot 11^{16} \) $C_2\times F_5$ (as 20T9) $[5, 5]$ (GRH)
20.0.1505680748169532571648000000000000000.2 x20 + 10x18 - 516x16 + 4960x14 - 24144x12 + 75360x10 - 55296x8 + 52480x6 + 358656x4 - 1172480x2 + 1848320 \( 2^{30}\cdot 5^{15}\cdot 11^{16} \) $C_2\times F_5$ (as 20T9) $[10]$ (GRH)
20.0.1959070718382489867508411407470703125.2 x20 - 5x19 + 40x18 - 80x17 + 840x16 - 2329x15 + 17495x14 + 92155x13 + 934495x12 + 3023350x11 + 6716306x10 - 16162825x9 - 138381605x8 - 538651975x7 - 1008503770x6 - 270425399x5 + 5808953160x4 + 21092371985x3 + 43037450335x2 + 53878854080x + 35445196901 \( 5^{31}\cdot 29^{10} \) $C_2\times F_5$ (as 20T9) n/a
20.4.3816691632293169386684894561767578125.1 x20 - 5x19 - 25x18 + 390x17 - 1075x16 - 1282x15 + 24500x14 - 185365x13 + 839990x12 - 575235x11 - 12799606x10 + 53786260x9 - 99979485x8 - 217085270x7 + 1894042635x6 - 255897903x5 - 10721050195x4 + 2198708690x3 + 18277709420x2 - 12345750840x + 49350856976 \( 5^{31}\cdot 31^{10} \) $C_2\times F_5$ (as 20T9) n/a
20.0.6422646617589481211251988555908203125.1 x20 - 9x19 + 34x18 - 44x17 - 265x16 + 1286x15 - 773x14 - 3682x13 + 13368x12 + 20263x11 - 34508x10 - 44433x9 + 246404x8 + 66122x7 - 138042x6 - 33663x5 + 299206x4 + 241895x3 + 108785x2 + 43805x + 8705 \( 5^{15}\cdot 29^{18} \) $C_2\times F_5$ (as 20T9) $[2, 2]$ (GRH)
20.0.7131970418917243368923664093017578125.2 x20 - 5x19 + 45x18 - 95x17 + 1090x16 - 2939x15 + 24430x14 + 128940x13 + 1449605x12 + 5100880x11 + 13220076x10 - 24508695x9 - 259823140x8 - 1145438325x7 - 2438250905x6 - 1385834729x5 + 13088961695x4 + 55400347980x3 + 125265538040x2 + 174097207960x + 128412299536 \( 3^{10}\cdot 5^{31}\cdot 11^{10} \) $C_2\times F_5$ (as 20T9) n/a
20.4.9230125234163877365792000000000000000.1 x20 - x18 - 109x16 + 149x14 - 2014x12 - 36365x10 + 127585x8 - 1005950x6 + 733025x4 + 67500x2 + 50000 \( 2^{20}\cdot 5^{15}\cdot 19^{16} \) $C_2\times F_5$ (as 20T9) Trivial (GRH)
20.4.21333423461884919389012763702392578125.1 x20 - 7x19 + 2x18 + 85x17 - 89x16 - 485x15 - 502x14 + 7124x13 - 3389x12 - 37645x11 + 1825x10 + 232525x9 + 94360x8 - 986175x7 - 1307700x6 + 1275150x5 + 3604650x4 + 1354000x3 - 3259625x2 - 3537500x - 968125 \( 5^{15}\cdot 31^{18} \) $C_2\times F_5$ (as 20T9) $[5]$ (GRH)
20.0.22391715889879730530083179473876953125.1 x20 - 5x19 + 50x18 - 110x17 + 1370x16 - 3619x15 + 33025x14 + 174325x13 + 2145955x12 + 8083750x11 + 23745326x10 - 34682135x9 - 452982025x8 - 2228991105x7 - 5269012810x6 - 4302198659x5 + 26632021340x4 + 130244452175x3 + 322173998635x2 + 490733138390x + 401120497321 \( 5^{31}\cdot 37^{10} \) $C_2\times F_5$ (as 20T9) n/a
20.4.37906719768380750901997089385986328125.1 x20 - 5x19 - 35x18 + 500x17 - 1085x16 - 3602x15 + 35340x14 - 305645x13 + 1752770x12 - 1234795x11 - 35238496x10 + 150274870x9 - 275565135x8 - 919172770x7 + 7876207515x6 - 176450583x5 - 55565363835x4 + 9898849230x3 + 91075080080x2 - 73949086720x + 521177724016 \( 3^{10}\cdot 5^{31}\cdot 13^{10} \) $C_2\times F_5$ (as 20T9) n/a
20.0.47929047471561558446078911407470703125.2 x20 - 6x19 + 10x18 + 30x17 - 231x16 - 846x15 + 14657x14 - 96020x13 + 424696x12 - 1471866x11 + 4600432x10 - 13640902x9 + 41055054x8 - 108630102x7 + 263443921x6 - 515816388x5 + 871193851x4 - 1118784220x3 + 1251134700x2 - 767760000x + 778286125 \( 5^{15}\cdot 7^{10}\cdot 11^{18} \) $C_2\times F_5$ (as 20T9) $[2, 2, 20]$ (GRH)
20.0.62504128134587784297764301300048828125.2 x20 - 5x19 + 55x18 - 125x17 + 1680x16 - 4369x15 + 43460x14 + 229210x13 + 3060265x12 + 12199900x11 + 39844916x10 - 46253755x9 - 744886310x8 - 4046349655x7 - 10452282415x6 - 10776463559x5 + 49933574625x4 + 280542235970x3 + 751545978640x2 + 1241779064960x + 1114173964016 \( 5^{31}\cdot 41^{10} \) $C_2\times F_5$ (as 20T9) n/a
20.0.86825139158850321116448000000000000000.4 x20 + 15x18 - 1161x16 + 16740x14 - 122229x12 + 572265x10 - 629856x8 + 896670x6 + 9191961x4 - 45074070x2 + 106583445 \( 2^{20}\cdot 3^{10}\cdot 5^{15}\cdot 11^{16} \) $C_2\times F_5$ (as 20T9) $[5, 10, 10]$ (GRH)
20.4.100636306746323821134865283966064453125.1 x20 - 5x19 - 40x18 + 555x17 - 1045x16 - 5077x15 + 40505x14 - 378895x13 + 2435570x12 - 1764255x11 - 54740221x10 + 234681130x9 - 425930625x8 - 1679254355x7 + 14514361470x6 + 372998712x5 - 112341446200x4 + 18580850960x3 + 175486910000x2 - 158789506050x + 1412257296521 \( 5^{31}\cdot 43^{10} \) $C_2\times F_5$ (as 20T9) n/a
20.0.126647581059570312500000000000000000000.2 x20 + 55x18 + 1815x16 + 39930x14 + 1976535x12 + 43483770x10 + 88578050x8 - 5846151300x6 - 37512804175x4 + 235794769100x2 + 2074993968080 \( 2^{20}\cdot 5^{31}\cdot 11^{10} \) $C_2\times F_5$ (as 20T9) n/a
20.4.182187370528513441169408000000000000000.1 x20 + 264x16 - 3520x14 - 27984x12 - 330880x10 - 727936x8 + 2787840x6 + 63222016x4 + 179660800x2 + 247808000 \( 2^{30}\cdot 5^{15}\cdot 11^{18} \) $C_2\times F_5$ (as 20T9) $[10]$ (GRH)
20.0.182187370528513441169408000000000000000.2 x20 + 264x16 + 3520x14 - 27984x12 + 330880x10 - 727936x8 - 2787840x6 + 63222016x4 - 179660800x2 + 247808000 \( 2^{30}\cdot 5^{15}\cdot 11^{18} \) $C_2\times F_5$ (as 20T9) $[2, 2, 20]$ (GRH)
20.0.187640866325114773598410895050048828125.1 x20 - 3x19 + 26x18 + 97x17 - 294x16 - 440x15 + 1705x14 - 8469x13 - 25967x12 - 57053x11 - 45091x10 + 433083x9 + 1796869x8 + 4440981x7 + 17183403x6 + 35686946x5 + 51034338x4 + 54483025x3 + 40765960x2 + 24180423x + 8509591 \( 3^{10}\cdot 5^{15}\cdot 19^{18} \) $C_2\times F_5$ (as 20T9) $[2, 2, 2, 2, 2]$ (GRH)
20.0.193315443721344440894830801055908203125.2 x20 - 3x19 + 100x18 - 190x17 + 3990x16 - 5019x15 + 84557x14 - 80690x13 + 1053075x12 - 972755x11 + 8039592x10 - 8576736x9 + 39544565x8 - 45897320x7 + 141614400x6 - 123999347x5 + 380740776x4 - 184199435x3 + 502243165x2 - 464217385x + 121715395 \( 5^{15}\cdot 11^{16}\cdot 13^{10} \) $C_2\times F_5$ (as 20T9) $[10]$ (GRH)
Next

Download all search results for