Learn more about

Further refine search

Results (displaying matches 1-50 of 122) Next

Label Polynomial Discriminant Galois group Class group
20.0.379379679498607236597.1 x20 - 5x19 + 6x18 + 14x17 - 46x16 + 25x15 + 73x14 - 122x13 - 8x12 + 193x11 - 146x10 - 144x9 + 308x8 - 127x7 - 128x6 + 161x5 - 46x4 - 26x3 + 25x2 - 8x + 1 \( 3^{15}\cdot 31^{9} \) $C_5\times C_5:D_4$ (as 20T53) Trivial
20.0.682047345811660860416.1 x20 - 2x19 + x18 - 3x17 + 6x16 - x15 + 3x14 - 11x13 - x12 + 6x11 + 7x10 - 5x9 + 9x8 - 16x7 - x6 + x5 + 8x4 + 4x3 + 7x2 - 3x + 1 \( 2^{10}\cdot 7^{10}\cdot 11^{9} \) $C_5\times C_5:D_4$ (as 20T53) Trivial
20.0.11194501700250570391613.1 x20 - 5x19 + 13x18 - 26x17 + 43x16 - 55x15 + 46x14 - 7x13 - 29x12 + 39x11 - 38x10 + 9x9 + 17x8 + 13x7 + 12x6 - 133x5 + 222x4 - 264x3 + 258x2 - 152x + 37 \( 7^{15}\cdot 11^{9} \) $C_5\times C_5:D_4$ (as 20T53) Trivial
20.0.84954018740373771557797888.1 x20 - 4x18 + 18x16 - 40x14 + 92x12 - 160x10 + 352x8 - 352x6 + 528x4 - 704x2 + 352 \( 2^{55}\cdot 11^{9} \) $C_5\times C_5:D_4$ (as 20T53) Trivial (GRH)
20.0.84954018740373771557797888.2 x20 + 4x18 + 18x16 + 40x14 + 92x12 + 160x10 + 352x8 + 352x6 + 528x4 + 704x2 + 352 \( 2^{55}\cdot 11^{9} \) $C_5\times C_5:D_4$ (as 20T53) Trivial (GRH)
20.0.163898699393368601103605933.1 x20 - 4x19 - 3x18 + 37x17 + 6x16 - 200x15 + 798x13 + 330x12 - 2049x11 - 1572x10 + 4196x9 + 6198x8 - 1827x7 - 7821x6 - 1859x5 + 5240x4 + 2048x3 - 2368x2 - 512x + 1024 \( 7^{15}\cdot 11^{13} \) $C_5\times C_5:D_4$ (as 20T53) Trivial (GRH)
20.0.661024130898095931054356037.1 x20 - 2x19 + 16x17 - 46x16 - 88x15 + 270x14 - 322x13 + 491x12 + 33x11 + 325x10 - 1159x9 + 5856x8 - 10579x7 + 5165x6 - 13069x5 + 13317x4 + 7840x3 + 32779x2 + 1658x + 5671 \( 3^{10}\cdot 7^{15}\cdot 11^{9} \) $C_5\times C_5:D_4$ (as 20T53) $[2]$ (GRH)
20.10.2838818318108534328806866944.1 x20 - 8x19 + 18x18 + 16x17 - 104x16 - 24x15 + 635x14 - 1058x13 + 283x12 + 534x11 + 1610x10 - 6072x9 + 5568x8 + 4548x7 - 15658x6 + 16262x5 - 8694x4 + 2450x3 - 315x2 + 8x + 1 \( -\,2^{20}\cdot 3^{10}\cdot 71^{9} \) $C_5\times C_5:D_4$ (as 20T53) Trivial
20.10.2838818318108534328806866944.2 x20 - 6x19 + 2x18 + 60x17 - 143x16 - 66x15 + 727x14 - 856x13 - 826x12 + 2784x11 - 1345x10 - 2840x9 + 3809x8 + 76x7 - 2883x6 + 1470x5 + 514x4 - 510x3 - 6x2 + 50x + 1 \( -\,2^{20}\cdot 3^{10}\cdot 71^{9} \) $C_5\times C_5:D_4$ (as 20T53) Trivial
20.0.11738285814841942098955993088.1 x20 - 98x14 + 392x12 + 686x10 + 3773x8 + 52822x4 + 184877 \( 2^{20}\cdot 7^{15}\cdot 11^{9} \) $C_5\times C_5:D_4$ (as 20T53) $[2, 2]$ (GRH)
20.0.35796303426870968668217777609.1 x20 - x19 + 9x18 - 2x17 - x16 - 6x15 + 56x14 + 164x13 - 104x12 - 47x11 + 697x10 + 362x9 - 875x8 - 616x7 + 136x6 + 1180x5 + 1411x4 + 721x3 + 1737x2 + 1486x + 1103 \( 11^{9}\cdot 19^{15} \) $C_5\times C_5:D_4$ (as 20T53) Trivial (GRH)
20.0.109321305666509476480595703125.1 x20 - 2x19 - 12x17 + 52x16 - 228x15 + 410x14 + 294x13 + 1303x12 - 7107x11 + 4413x10 - 25589x9 + 83612x8 + 69081x7 - 141961x6 - 440055x5 - 613169x4 - 59794x3 + 3668677x2 + 3387292x + 2233351 \( 5^{10}\cdot 7^{15}\cdot 11^{9} \) $C_5\times C_5:D_4$ (as 20T53) $[2]$ (GRH)
20.0.1243811788377812389377718878208.1 x20 - 4x18 + 90x16 - 72x14 + 4684x12 + 1792x10 - 56320x8 + 538208x6 + 489808x4 - 2811072x2 + 5153632 \( 2^{55}\cdot 11^{13} \) $C_5\times C_5:D_4$ (as 20T53) Trivial (GRH)
20.0.1243811788377812389377718878208.2 x20 + 4x18 + 90x16 + 72x14 + 4684x12 - 1792x10 - 56320x8 - 538208x6 + 489808x4 + 2811072x2 + 5153632 \( 2^{55}\cdot 11^{13} \) $C_5\times C_5:D_4$ (as 20T53) Trivial (GRH)
20.0.5016449852600330836716407488512.1 x20 + 12x18 + 162x16 + 1080x14 + 7452x12 + 38880x10 + 256608x8 + 769824x6 + 3464208x4 + 13856832x2 + 20785248 \( 2^{55}\cdot 3^{10}\cdot 11^{9} \) $C_5\times C_5:D_4$ (as 20T53) $[2, 2]$ (GRH)
20.0.5016449852600330836716407488512.2 x20 - 12x18 + 162x16 - 1080x14 + 7452x12 - 38880x10 + 256608x8 - 769824x6 + 3464208x4 - 13856832x2 + 20785248 \( 2^{55}\cdot 3^{10}\cdot 11^{9} \) $C_5\times C_5:D_4$ (as 20T53) $[2, 2]$ (GRH)
20.0.9678054300479022526566826737717.1 x20 - 2x19 + 54x18 - 97x17 + 1454x16 - 2178x15 + 24203x14 - 29499x13 + 271844x12 - 266297x11 + 2138211x10 - 1737644x9 + 11918963x8 - 8666349x7 + 46563112x6 - 30553298x5 + 119110990x4 - 62702972x3 + 173029525x2 - 53651341x + 103856419 \( 3^{10}\cdot 7^{15}\cdot 11^{13} \) $C_5\times C_5:D_4$ (as 20T53) $[2]$ (GRH)
20.0.12020004674398148709330936922112.1 x20 + 784x14 + 6272x12 - 21952x10 + 241472x8 + 13522432x4 + 189314048 \( 2^{30}\cdot 7^{15}\cdot 11^{9} \) $C_5\times C_5:D_4$ (as 20T53) $[2, 2]$ (GRH)
20.0.12020004674398148709330936922112.2 x20 - 784x14 + 6272x12 + 21952x10 + 241472x8 + 13522432x4 + 189314048 \( 2^{30}\cdot 7^{15}\cdot 11^{9} \) $C_5\times C_5:D_4$ (as 20T53) $[2, 2]$ (GRH)
20.0.171860242615100874270814694801408.1 x20 - 8x19 + 100x18 - 572x17 + 4226x16 - 19266x15 + 104804x14 - 393036x13 + 1692149x12 - 5256998x11 + 18451103x10 - 46979228x9 + 135712461x8 - 274849484x7 + 653189606x6 - 999145718x5 + 1945306784x4 - 2034072024x3 + 3221261412x2 - 1765189036x + 2248377097 \( 2^{20}\cdot 7^{15}\cdot 11^{13} \) $C_5\times C_5:D_4$ (as 20T53) $[2, 22]$ (GRH)
20.0.524093678472817852271376481973369.1 x20 - 7x19 + 2x18 + 77x17 - 40x16 - 515x15 - 469x14 + 3987x13 + 4811x12 - 19300x11 - 31273x10 + 71697x9 + 143855x8 - 306777x7 - 232705x6 + 640998x5 + 637422x4 - 1606905x3 - 390130x2 + 1125311x + 470981 \( 11^{13}\cdot 19^{15} \) $C_5\times C_5:D_4$ (as 20T53) Trivial (GRH)
20.0.693134039080601839001252435853312.1 x20 + 2646x14 + 31752x12 - 166698x10 + 2750517x8 + 346565142x4 + 10916801973 \( 2^{20}\cdot 3^{10}\cdot 7^{15}\cdot 11^{9} \) $C_5\times C_5:D_4$ (as 20T53) $[2, 2, 2]$ (GRH)
20.20.706388839731582814105670315409408.1 x20 - 8x19 - 12x18 + 226x17 - 123x16 - 2666x15 + 3138x14 + 17018x13 - 24119x12 - 63492x11 + 92520x10 + 138594x9 - 188890x8 - 165550x7 + 196554x6 + 91516x5 - 90361x4 - 14680x3 + 11874x2 - 1144x + 1 \( 2^{30}\cdot 3^{15}\cdot 71^{9} \) $C_5\times C_5:D_4$ (as 20T53) Trivial (GRH)
20.0.706388839731582814105670315409408.1 x20 - 8x19 + 48x18 - 194x17 + 657x16 - 1808x15 + 4398x14 - 9430x13 + 18493x12 - 33000x11 + 56352x10 - 91110x9 + 153485x8 - 242326x7 + 407778x6 - 515444x5 + 857558x4 - 668326x3 + 1079706x2 - 137098x + 8641 \( 2^{30}\cdot 3^{15}\cdot 71^{9} \) $C_5\times C_5:D_4$ (as 20T53) $[2, 82]$ (GRH)
20.20.786954594434420875688580751953125.1 x20 - x19 - 39x18 + 37x17 + 566x16 - 487x15 - 4062x14 + 3233x13 + 16223x12 - 12098x11 - 37808x10 + 26337x9 + 51642x8 - 32819x7 - 40081x6 + 21890x5 + 16403x4 - 6600x3 - 3045x2 + 528x + 179 \( 5^{10}\cdot 29^{5}\cdot 211^{8} \) $C_5\times C_5:D_4$ (as 20T53) Trivial (GRH)
20.0.829629089261462612869120000000000.1 x20 + 20x18 + 450x16 + 5000x14 + 57500x12 + 500000x10 + 5500000x8 + 27500000x6 + 206250000x4 + 1375000000x2 + 3437500000 \( 2^{55}\cdot 5^{10}\cdot 11^{9} \) $C_5\times C_5:D_4$ (as 20T53) $[2]$ (GRH)
20.0.829629089261462612869120000000000.2 x20 - 20x18 + 450x16 - 5000x14 + 57500x12 - 500000x10 + 5500000x8 - 27500000x6 + 206250000x4 - 1375000000x2 + 3437500000 \( 2^{55}\cdot 5^{10}\cdot 11^{9} \) $C_5\times C_5:D_4$ (as 20T53) n/a
20.0.1543257121397609899589781498462437.1 x20 - 2x19 - 40x17 + 150x16 - 1600x15 + 5758x14 + 2870x13 + 43163x12 - 142599x11 - 97899x10 - 2473867x9 + 8140696x8 + 19766269x7 - 16898855x6 - 143712065x5 - 87670111x4 - 1144870468x3 + 6342631671x2 + 17038017814x + 27778159711 \( 7^{15}\cdot 11^{9}\cdot 13^{10} \) $C_5\times C_5:D_4$ (as 20T53) n/a
20.0.1600573236263365245152401689453125.1 x20 - 2x19 - 86x18 + 155x17 + 3456x16 - 5762x15 - 85725x14 + 132481x13 + 1467570x12 - 2030017x11 - 18368583x10 + 21318004x9 + 172316543x8 - 153736813x7 - 1206080098x6 + 717065378x5 + 6066158054x4 - 1732999488x3 - 19912550031x2 + 988623515x + 33019779529 \( 5^{10}\cdot 7^{15}\cdot 11^{13} \) $C_5\times C_5:D_4$ (as 20T53) $[2]$ (GRH)
20.0.2113735921053303828889591550033841.1 x20 - x19 - 10x18 - 2x17 + 170x16 + 545x15 + 379x14 + 69x13 + 7629x12 + 23760x11 + 2312x10 - 113524x9 - 155820x8 + 270476x7 + 1530472x6 + 4025380x5 + 8730182x4 + 12840750x3 + 13160320x2 + 12555242x + 11688877 \( 3^{10}\cdot 11^{9}\cdot 19^{15} \) $C_5\times C_5:D_4$ (as 20T53) $[2]$ (GRH)
20.0.3684293267187500000000000000000000.1 x20 + 35x18 + 475x16 + 3205x14 + 11725x12 + 24910x10 + 31900x8 + 24750x6 + 11275x4 + 2750x2 + 275 \( 2^{20}\cdot 5^{26}\cdot 11^{9} \) $C_5\times C_5:D_4$ (as 20T53) $[5, 110]$ (GRH)
20.0.6455313778301718076702695673828125.1 x20 - 2x19 + 58x17 - 193x16 - 2188x15 - 465x14 - 7861x13 + 91673x12 - 34407x11 + 607603x10 + 3012761x9 + 12205932x8 - 10310764x7 + 30457244x6 - 323709400x5 + 3839375256x4 - 3757533269x3 + 15771143512x2 - 45579456448x + 87786948061 \( 3^{10}\cdot 5^{10}\cdot 7^{15}\cdot 11^{9} \) $C_5\times C_5:D_4$ (as 20T53) n/a
20.0.7491365733177814925531216830515137.1 x20 - 2x19 - 16x18 + 63x17 + 66x16 - 591x15 + 341x14 + 1985x13 - 5499x12 - 2279x11 + 18053x10 - 21969x9 + 18198x8 + 143040x7 + 68633x6 + 205064x5 + 552136x4 + 56889x3 + 560763x2 + 160304x + 137729 \( 11^{9}\cdot 43^{15} \) $C_5\times C_5:D_4$ (as 20T53) Trivial (GRH)
20.0.22568047146271109644424925266534237.1 x20 - 2x19 - 54x17 + 199x16 - 2748x15 + 11855x14 + 6363x13 + 124321x12 - 356967x11 - 557925x10 - 9062519x9 + 34025996x8 + 88733076x7 - 64052500x6 - 719171544x5 + 789030112x4 - 10400245765x3 + 52659896224x2 + 185883345808x + 395131293061 \( 7^{15}\cdot 11^{9}\cdot 17^{10} \) $C_5\times C_5:D_4$ (as 20T53) n/a
20.0.23997407597237747473858076304474112.1 x20 - 28x18 + 882x16 - 13720x14 + 220892x12 - 2689120x10 + 41412448x8 - 289887136x6 + 3043814928x4 - 28408939328x2 + 99431287648 \( 2^{55}\cdot 7^{10}\cdot 11^{9} \) $C_5\times C_5:D_4$ (as 20T53) n/a
20.0.23997407597237747473858076304474112.2 x20 + 28x18 + 882x16 + 13720x14 + 220892x12 + 2689120x10 + 41412448x8 + 289887136x6 + 3043814928x4 + 28408939328x2 + 99431287648 \( 2^{55}\cdot 7^{10}\cdot 11^{9} \) $C_5\times C_5:D_4$ (as 20T53) n/a
20.0.37535144662134652842245124374134784.1 x20 - 19x18 + 152x16 - 1444x14 + 25270x12 - 144039x10 + 679041x8 + 12901779x4 - 27237089x2 + 27237089 \( 2^{20}\cdot 11^{9}\cdot 19^{15} \) $C_5\times C_5:D_4$ (as 20T53) $[2]$ (GRH)
20.0.68634231647302196434922446986223013.1 x20 - 2x19 + 72x17 - 242x16 - 3504x15 - 3202x14 - 14490x13 + 225499x12 - 126135x11 + 1940277x10 + 10604317x9 + 46160552x8 - 13194435x7 + 101111009x6 - 1350280281x5 + 23164696201x4 - 25819961020x3 + 106836459007x2 - 399048852098x + 964658227471 \( 7^{15}\cdot 11^{9}\cdot 19^{10} \) $C_5\times C_5:D_4$ (as 20T53) n/a
20.0.73445842291921443780364922039304192.1 x20 - 4x19 - 54x18 + 144x17 + 2405x16 - 4352x15 - 63982x14 + 47192x13 + 1404639x12 - 403332x11 - 20955572x10 - 7617672x9 + 273021994x8 + 66920760x7 - 2308326270x6 - 1486736436x5 + 18407809245x4 + 3758832104x3 - 74360770750x2 - 49255787044x + 279487159291 \( 2^{55}\cdot 3^{10}\cdot 11^{13} \) $C_5\times C_5:D_4$ (as 20T53) $[2, 2]$ (GRH)
20.0.73445842291921443780364922039304192.2 x20 - 4x19 + 66x18 - 144x17 + 2429x16 - 4256x15 + 66002x14 - 78616x13 + 1344183x12 - 942756x11 + 21478084x10 - 3538344x9 + 277175770x8 + 68785752x7 + 2845773570x6 + 1894261020x5 + 22516220277x4 + 18926594408x3 + 116894317946x2 + 100071545420x + 314911118323 \( 2^{55}\cdot 3^{10}\cdot 11^{13} \) $C_5\times C_5:D_4$ (as 20T53) n/a
20.0.114631697410565840810117120000000000.1 x20 - 12250x14 + 245000x12 + 2143750x10 + 58953125x8 + 20633593750x4 + 1805439453125 \( 2^{20}\cdot 5^{10}\cdot 7^{15}\cdot 11^{9} \) $C_5\times C_5:D_4$ (as 20T53) n/a
20.0.175984888437863295253314247476641792.1 x20 - 6x19 - 117x18 + 634x17 + 7277x16 - 34000x15 - 299188x14 + 1164480x13 + 8847515x12 - 27555888x11 - 194166885x10 + 458406564x9 + 3167235334x8 - 5238733956x7 - 37554595669x6 + 38600167906x5 + 306909341114x4 - 157170563398x3 - 1559801944752x2 + 222113646576x + 3806977113521 \( 2^{30}\cdot 7^{15}\cdot 11^{13} \) $C_5\times C_5:D_4$ (as 20T53) n/a
20.0.175984888437863295253314247476641792.2 x20 - 8x19 + 170x18 - 1076x17 + 13039x16 - 68434x15 + 600600x14 - 2650522x13 + 18371119x12 - 68079464x11 + 388231353x10 - 1190535180x9 + 5709357517x8 - 14042016534x7 + 57369907328x6 - 106965671572x5 + 375875514806x4 - 475906101396x3 + 1451235311405x2 - 941629298346x + 2524841438603 \( 2^{30}\cdot 7^{15}\cdot 11^{13} \) $C_5\times C_5:D_4$ (as 20T53) n/a
20.0.349573275653036803400564234462890625.1 x20 - x19 + 28x18 - 2x17 + 132x16 + 925x15 + 4597x14 + 4515x13 + 53419x12 + 165614x11 + 741564x10 + 1419624x9 + 3626130x8 + 14990118x7 + 31657670x6 + 43648056x5 + 60299602x4 + 94712168x3 + 696443374x2 + 330515948x + 42152299 \( 5^{10}\cdot 11^{9}\cdot 19^{15} \) $C_5\times C_5:D_4$ (as 20T53) $[2, 22]$ (GRH)
20.0.463749150216643050841264365840725837.1 x20 - 2x19 + 86x17 - 291x16 - 5128x15 - 8165x14 - 24157x13 + 471311x12 - 327567x11 + 4957725x10 + 28845701x9 + 138969016x8 + 17023816x7 + 265747180x6 - 4273590944x5 + 99672823022x4 - 121309533205x3 + 499850958234x2 - 2285489898392x + 6656093149231 \( 7^{15}\cdot 11^{9}\cdot 23^{10} \) $C_5\times C_5:D_4$ (as 20T53) n/a
20.0.709769256018536283137282494313791488.1 x20 + 21168x14 + 508032x12 - 5334336x10 + 176033088x8 + 88720676352x4 + 11178805220352 \( 2^{30}\cdot 3^{10}\cdot 7^{15}\cdot 11^{9} \) $C_5\times C_5:D_4$ (as 20T53) n/a
20.0.709769256018536283137282494313791488.2 x20 - 21168x14 + 508032x12 + 5334336x10 + 176033088x8 + 88720676352x4 + 11178805220352 \( 2^{30}\cdot 3^{10}\cdot 7^{15}\cdot 11^{9} \) $C_5\times C_5:D_4$ (as 20T53) n/a
20.0.4709607838486813481044153118961614213.1 x20 - 2x19 - 96x17 + 346x16 - 8040x15 + 50894x14 + 32718x13 + 1049707x12 - 2397999x11 - 10904667x10 - 122674031x9 + 673956560x8 + 1783530285x7 - 911324443x6 - 17686730229x5 + 202954019677x4 - 785792800744x3 + 3628004636611x2 + 21873265752274x + 79154483718199 \( 7^{15}\cdot 11^{9}\cdot 29^{10} \) $C_5\times C_5:D_4$ (as 20T53) n/a
20.0.9175330252180039242707571655982422013.1 x20 - 2x19 + 114x17 - 389x16 - 9300x15 - 27121x14 - 54957x13 + 1509397x12 - 1325319x11 + 21491823x10 + 135093409x9 + 803037260x8 + 519847620x7 + 1197335012x6 - 25786596024x5 + 987102681652x4 - 1345126254829x3 + 5543074970116x2 - 34565255468696x + 135033863407129 \( 7^{15}\cdot 11^{9}\cdot 31^{10} \) $C_5\times C_5:D_4$ (as 20T53) n/a
20.0.10111569723784930165426015116328899641.1 x20 - x19 - 29x18 - 2x17 + 645x16 + 2578x15 - 3098x14 - 2268x13 + 241234x12 + 737381x11 - 1267971x10 - 7923930x9 + 4621179x8 + 87517488x7 + 260007308x6 + 686312568x5 + 2775269509x4 + 5939873213x3 + 6102106147x2 + 12852126152x + 22061643433 \( 7^{10}\cdot 11^{9}\cdot 19^{15} \) $C_5\times C_5:D_4$ (as 20T53) n/a
Next

Download all search results for