Learn more about

Further refine search

Results (displaying matches 1-50 of 1909) Next

Label Polynomial Discriminant Galois group Class group
20.0.781250000000000000000.1 x20 - 5x19 + 5x18 + 15x17 - 30x16 - 21x15 + 75x14 + 15x13 - 120x12 - 5x11 + 141x10 - 5x9 - 120x8 + 15x7 + 75x6 - 21x5 - 30x4 + 15x3 + 5x2 - 5x + 1 \( 2^{16}\cdot 5^{23} \) $F_5$ (as 20T5) Trivial
20.0.3354518684571451850752.1 x20 - 2x19 + 10x17 - 15x16 + 40x14 - 64x13 + 46x12 + 8x11 - 32x10 + 8x9 + 46x8 - 64x7 + 40x6 - 15x4 + 10x3 - 2x + 1 \( 2^{16}\cdot 13^{15} \) $F_5$ (as 20T5) Trivial
20.0.4656612873077392578125.1 x20 - 10x19 + 50x18 - 165x17 + 375x16 - 552x15 + 445x14 - 85x13 - 35x12 - 375x11 + 879x10 - 925x9 + 585x8 - 285x7 + 175x6 - 128x5 + 65x4 - 15x3 + 1 \( 5^{31} \) $F_5$ (as 20T5) Trivial
20.0.86093442000000000000000.1 x20 - x19 + 4x18 - 4x17 + 2x16 + 9x15 + 2x14 + 46x13 + 69x12 + 84x11 + 62x10 - 6x9 - 6x8 + 26x7 + 62x6 + 54x5 + 17x4 + x3 + 4x2 + 4x + 1 \( 2^{16}\cdot 3^{16}\cdot 5^{15} \) $F_5$ (as 20T5) Trivial
20.0.169023218768603112760857.1 x20 - x19 + 2x18 + 3x17 - 6x16 + 23x15 - 13x14 + 7x13 + 34x12 - 50x11 + 81x10 - 50x9 + 34x8 + 7x7 - 13x6 + 23x5 - 6x4 + 3x3 + 2x2 - x + 1 \( 3^{10}\cdot 17^{15} \) $F_5$ (as 20T5) $[2]$
20.0.513156902790069580078125.1 x20 - 5x19 + 20x18 - 60x17 + 140x16 - 281x15 + 460x14 - 645x13 + 770x12 - 780x11 + 711x10 - 560x9 + 420x8 - 155x7 + 60x6 - x5 - 20x4 - 20x3 - 30x2 - 25x + 41 \( 3^{16}\cdot 5^{23} \) $F_5$ (as 20T5) Trivial
20.0.1014188554980499267578125.1 x20 - 5x19 + 13x18 - 30x17 + 63x16 - 110x15 + 181x14 - 275x13 + 355x12 - 445x11 + 561x10 - 635x9 + 703x8 - 775x7 + 773x6 - 690x5 + 546x4 - 370x3 + 215x2 - 100x + 25 \( 5^{15}\cdot 7^{16} \) $F_5$ (as 20T5) Trivial
20.0.1550921573240973639548928.1 x20 + 4x18 + 14x16 + 28x14 + 45x12 + 64x10 + 132x8 + 256x6 + 292x4 + 160x2 + 32 \( 2^{55}\cdot 3^{16} \) $F_5$ (as 20T5) Trivial
20.0.12800000000000000000000000.1 x20 + 5x16 - 4x15 + 30x14 + 20x13 + 25x12 + 60x11 + 46x10 + 60x9 + 25x8 + 20x7 + 30x6 - 4x5 + 5x4 + 1 \( 2^{30}\cdot 5^{23} \) $F_5$ (as 20T5) $[2]$
20.0.146746349255915802001953125.1 x20 - 4x19 + 11x18 - 14x17 + 27x16 - 4x15 + 76x14 + 26x13 + 242x12 + 186x11 + 1176x10 + 1496x9 + 3207x8 + 3946x7 + 4941x6 + 3726x5 + 4572x4 + 2746x3 + 2191x2 + 686x + 641 \( 5^{15}\cdot 37^{10} \) $F_5$ (as 20T5) $[2]$
20.0.275716983698000000000000000.1 x20 - 3x19 + 16x18 - 32x17 + 110x16 - 153x15 + 358x14 - 206x13 + 553x12 + 106x11 + 758x10 + 946x9 + 724x8 + 664x7 - 58x6 + 66x5 + 161x4 + 205x3 + 190x2 + 50x + 25 \( 2^{16}\cdot 5^{15}\cdot 13^{10} \) $F_5$ (as 20T5) $[2]$
20.0.565522513762594615522033664.1 x20 - 6x19 + 22x18 - 61x17 + 147x16 - 338x15 + 780x14 - 1782x13 + 3658x12 - 6414x11 + 10114x10 - 15538x9 + 23243x8 - 31374x7 + 35592x6 - 32603x5 + 23544x4 - 13072x3 + 5366x2 - 1501x + 223 \( 2^{16}\cdot 29^{15} \) $F_5$ (as 20T5) Trivial
20.0.738112500000000000000000000.1 x20 + 5x18 - 10x17 + 20x16 - 18x15 - 25x14 + 30x13 + 20x12 + 350x11 - 261x10 - 950x9 + 155x8 + 1010x7 + 730x6 - 172x5 - 980x4 - 880x3 + 160x2 + 640x + 256 \( 2^{20}\cdot 3^{10}\cdot 5^{23} \) $F_5$ (as 20T5) $[2, 2]$
20.0.934494206144111487135776768.1 x20 - 4x18 + 14x16 + 32x14 - 258x12 + 1432x10 - 824x8 + 384x6 + 313x4 - 308x2 + 242 \( 2^{55}\cdot 11^{10} \) $F_5$ (as 20T5) $[2]$
20.0.1099511627776000000000000000.1 x20 - 8x19 + 40x18 - 136x17 + 352x16 - 728x15 + 1256x14 - 1912x13 + 3125x12 - 6608x11 + 16456x10 - 37920x9 + 71958x8 - 107952x7 + 126216x6 - 112960x5 + 75672x4 - 36736x3 + 12288x2 - 2560x + 256 \( 2^{55}\cdot 5^{15} \) $F_5$ (as 20T5) $[4]$
20.0.1402274470934209014892578125.2 x20 - 2x19 - 2x18 + 18x17 - 32x16 + 88x15 + 58x14 - 782x13 + 1538x12 + 1348x11 - 466x10 - 894x9 + 346x8 - 114x7 - 424x6 - 88x5 + 214x4 + 54x3 + 14x2 + 4x + 1 \( 5^{15}\cdot 11^{16} \) $F_5$ (as 20T5) $[5]$
20.0.1410554953728000000000000000.1 x20 - 2x19 + 13x18 - 22x17 + 99x16 - 152x15 + 492x14 - 688x13 + 1763x12 - 2238x11 + 4497x10 - 5026x9 + 8525x8 - 7336x7 + 10214x6 - 7176x5 + 6476x4 - 2960x3 + 2160x2 - 960x + 320 \( 2^{30}\cdot 3^{16}\cdot 5^{15} \) $F_5$ (as 20T5) $[2]$
20.0.1643401287186145782470703125.1 x20 - 5x19 + 15x18 - 30x17 + 45x16 - 70x15 + 145x14 - 360x13 + 755x12 - 1115x11 + 930x10 - 305x9 + 705x8 - 3530x7 + 8095x6 - 11300x5 + 11445x4 - 9200x3 + 5425x2 - 1925x + 295 \( 5^{23}\cdot 13^{10} \) $F_5$ (as 20T5) $[2]$
20.0.1818989403545856475830078125.2 x20 + 25x10 + 5 \( 5^{39} \) $F_5$ (as 20T5) Trivial
20.0.4031987800898000000000000000.1 x20 - 5x19 - 3x18 + 51x17 - 36x16 - 221x15 + 399x14 - 153x13 + 262x12 - 677x11 + 169x10 + 203x9 + 236x8 - 335x7 - 335x6 + 325x5 + 990x4 + 1025x3 + 575x2 + 175x + 25 \( 2^{16}\cdot 5^{15}\cdot 17^{10} \) $F_5$ (as 20T5) $[2]$
20.0.4966875620168119680952696832.1 x20 - 8x19 + 40x18 - 112x17 + 194x16 - 88x15 - 380x14 + 1128x13 - 1232x12 - 32x11 + 2600x10 - 4352x9 + 4326x8 - 2744x7 + 1924x6 - 1304x5 + 1047x4 - 72x3 + 168x2 - 96x + 16 \( 2^{55}\cdot 13^{10} \) $F_5$ (as 20T5) $[2]$
20.0.5337142039963166778564453125.1 x20 - 4x19 + 10x18 - 5x17 - 19x16 + 50x15 + 54x14 - 40x13 - 199x12 + 840x11 + 620x10 - 1279x9 + 1556x8 + 5430x7 + 3925x6 - 1385x5 + 2240x4 + 2325x3 + 1225x2 + 25x + 25 \( 5^{15}\cdot 53^{10} \) $F_5$ (as 20T5) $[2]$
20.0.9256148959232000000000000000.1 x20 - 6x19 + 21x18 - 54x17 + 162x16 - 494x15 + 1081x14 - 1382x13 + 1059x12 - 1812x11 + 5568x10 - 7980x9 + 1291x8 + 3950x7 + 6055x6 - 2470x5 - 890x4 + 850x3 + 1275x2 + 150x + 25 \( 2^{30}\cdot 5^{15}\cdot 7^{10} \) $F_5$ (as 20T5) $[2, 2]$ (GRH)
20.0.20776019874734407680000000000.1 x20 - 8x19 + 24x18 - 48x17 + 134x16 - 296x15 + 584x14 - 1304x13 + 1717x12 - 2032x11 + 3016x10 - 1352x9 + 4276x8 + 3008x7 - 6232x6 + 9872x5 + 2300x4 - 4992x3 + 1872x2 - 256x + 16 \( 2^{55}\cdot 3^{10}\cdot 5^{10} \) $F_5$ (as 20T5) $[2, 2]$
20.0.21852734616490167965351477248.1 x20 - 10x19 + 60x18 - 255x17 + 833x16 - 2176x15 + 4622x14 - 8044x13 + 11428x12 - 13058x11 + 11680x10 - 7762x9 + 3457x8 - 830x7 + 1310x6 - 3773x5 + 4070x4 - 1854x3 - 876x2 + 1177x + 1381 \( 2^{16}\cdot 37^{15} \) $F_5$ (as 20T5) Trivial
20.0.24032520061123371124267578125.1 x20 - 5x19 + 20x18 - 65x17 + 200x16 - 482x15 + 1015x14 - 2005x13 + 3375x12 - 5715x11 + 8584x10 - 12320x9 + 16915x8 - 25850x7 + 28430x6 - 32983x5 + 54230x4 + 1020x3 + 71185x2 + 31085x + 14741 \( 5^{23}\cdot 17^{10} \) $F_5$ (as 20T5) $[2]$
20.0.32758971529018084480000000000.1 x20 + 12x18 - 7x17 + 41x16 - 58x15 + 102x14 + 272x13 + 568x12 + 538x11 + 664x10 + 362x9 + 3461x8 + 14x7 + 8626x6 + 3161x5 + 5774x4 + 3726x3 + 1980x2 + 351x + 81 \( 2^{16}\cdot 5^{10}\cdot 13^{15} \) $F_5$ (as 20T5) $[2]$
20.0.33359761956402000000000000000.1 x20 - 5x19 + 27x18 - 81x17 + 204x16 - 379x15 + 509x14 - 707x13 + 1062x12 - 1983x11 + 3759x10 - 2473x9 + 2326x8 - 1065x7 + 6885x6 + 765x5 - 540x4 + 6075x3 + 2025x2 + 2025x + 2025 \( 2^{16}\cdot 3^{10}\cdot 5^{15}\cdot 7^{10} \) $F_5$ (as 20T5) $[2, 2]$ (GRH)
20.0.33630250781250000000000000000.1 x20 - 5x19 - 15x18 + 115x17 - 20x16 - 841x15 + 1115x14 + 1785x13 - 3880x12 - 1055x11 + 5601x10 - 1055x9 - 3880x8 + 1785x7 + 1115x6 - 841x5 - 20x4 + 115x3 - 15x2 - 5x + 1 \( 2^{16}\cdot 3^{16}\cdot 5^{23} \) $F_5$ (as 20T5) $[5]$ (GRH)
20.0.33630250781250000000000000000.2 x20 - 5x19 + 10x18 - 10x17 + 30x16 - 113x15 - 30x14 + 590x13 + 275x12 - 2640x11 - 2256x10 + 6770x9 + 8900x8 - 9670x7 - 21040x6 + 9408x5 + 56075x4 + 65245x3 + 37290x2 + 10890x + 1331 \( 2^{16}\cdot 3^{16}\cdot 5^{23} \) $F_5$ (as 20T5) $[5]$ (GRH)
20.0.33630250781250000000000000000.3 x20 - 5x19 + 15x18 - 35x17 + 70x16 - 97x15 + 95x14 - 135x13 + 590x12 - 2555x11 + 5169x10 - 6185x9 + 2780x8 + 4905x7 + 1565x6 - 7753x5 + 3460x4 + 595x3 - 2205x2 - 1715x + 2401 \( 2^{16}\cdot 3^{16}\cdot 5^{23} \) $F_5$ (as 20T5) $[5]$ (GRH)
20.0.74651918354942620880126953125.1 x20 - 2x19 + 7x18 - 2x17 - 37x16 + 28x15 - 245x13 + 266x12 + 395x11 - 660x10 + 1358x9 + 6413x8 + 6698x7 + 4837x6 + 9188x5 + 16636x4 + 20385x3 + 19110x2 + 11925x + 3555 \( 3^{10}\cdot 5^{15}\cdot 23^{10} \) $F_5$ (as 20T5) $[2, 2]$ (GRH)
20.0.87354219101251702667236328125.1 x20 - 4x19 + 7x18 - x17 - 6x16 - 119x15 + 843x14 - 3114x13 + 8298x12 - 17511x11 + 30458x10 - 45048x9 + 57805x8 - 64072x7 + 59806x6 - 45528x5 + 27366x4 - 12495x3 + 4080x2 - 850x + 85 \( 5^{15}\cdot 17^{15} \) $F_5$ (as 20T5) $[4]$
20.0.131153132009996266143798828125.1 x20 - 2x19 - 17x18 + 48x17 + 94x16 - 402x15 + 137x14 + 1337x13 - 2082x12 - 23x11 + 3747x10 - 5361x9 + 5490x8 - 5271x7 + 5114x6 - 4061x5 + 2436x4 - 1100x3 + 415x2 - 125x + 25 \( 5^{15}\cdot 73^{10} \) $F_5$ (as 20T5) $[2]$ (GRH)
20.0.181102173953389804962158203125.1 x20 - 3x19 + 13x18 - 18x17 + 74x16 - 63x15 + 202x14 + 3x13 + 828x12 - 357x11 - 578x10 - 2484x9 - 1065x8 - 789x7 + 994x6 + 1896x5 + 2446x4 + 2010x3 + 700x2 + 690x + 545 \( 3^{16}\cdot 5^{15}\cdot 13^{10} \) $F_5$ (as 20T5) $[2]$ (GRH)
20.0.198839676120293140411376953125.1 x20 - 5x19 + 10x18 - 10x17 + 30x16 - 141x15 + 340x14 - 415x13 + 220x12 + 20x11 - 99x10 + 20x9 + 220x8 - 415x7 + 340x6 - 141x5 + 30x4 - 10x3 + 10x2 - 5x + 1 \( 3^{10}\cdot 5^{23}\cdot 7^{10} \) $F_5$ (as 20T5) $[2, 2]$ (GRH)
20.20.220683788281250000000000000000.1 x20 - 10x19 + 20x18 + 105x17 - 465x16 + 48x15 + 2450x14 - 3200x13 - 3700x12 + 9850x11 - 1396x10 - 10230x9 + 6315x8 + 3270x7 - 3620x6 + 17x5 + 680x4 - 100x3 - 40x2 + 5x + 1 \( 2^{16}\cdot 5^{23}\cdot 7^{10} \) $F_5$ (as 20T5) Trivial (GRH)
20.0.220894941712131239715817914368.1 x20 - 4x19 + 14x18 - 20x17 + 63x16 - 16x15 + 220x14 + 264x13 + 1741x12 + 1036x11 + 6254x10 + 11660x9 + 22413x8 + 29992x7 + 50816x6 + 74528x5 + 80510x4 + 81312x3 + 52056x2 + 25888x + 11576 \( 2^{55}\cdot 19^{10} \) $F_5$ (as 20T5) $[2]$ (GRH)
20.0.371458280474198465736072578229.1 x20 - x19 - 2x18 - 11x17 + 54x16 - 28x15 + 63x14 - 158x13 + 317x12 - 264x11 + 852x10 - 323x9 + 986x8 - 413x7 + 2414x6 - 1452x5 + 5813x4 - 2026x3 + 6579x2 - 1020x + 2075 \( 3^{16}\cdot 29^{15} \) $F_5$ (as 20T5) Trivial (GRH)
20.0.755827200000000000000000000000.1 x20 - 25x16 + 60x14 + 165x12 - 270x10 - 2680x8 + 6120x6 + 2080x4 - 2400x2 + 2880 \( 2^{30}\cdot 3^{10}\cdot 5^{23} \) $F_5$ (as 20T5) $[2, 2]$ (GRH)
20.0.841414466600402000000000000000.1 x20 - 6x19 + 15x18 - 36x17 + 115x16 - 242x15 + 466x14 - 1176x13 + 1851x12 - 2716x11 + 6539x10 - 8834x9 + 13461x8 - 34154x7 + 25816x6 + 22302x5 - 11105x4 - 18754x3 - 10375x2 + 2366x + 18671 \( 2^{16}\cdot 5^{15}\cdot 29^{10} \) $F_5$ (as 20T5) $[2, 2]$ (GRH)
20.0.951590574034612536651611328125.1 x20 - 2x19 + 23x18 - 52x17 + 194x16 - 482x15 + 1027x14 - 1983x13 + 3618x12 - 5173x11 + 7077x10 - 8941x9 + 9730x8 - 9101x7 + 7784x6 - 5241x5 + 2746x4 - 1190x3 + 415x2 - 75x + 25 \( 5^{15}\cdot 89^{10} \) $F_5$ (as 20T5) $[2, 2]$ (GRH)
20.0.1160968955369998535166956051501.1 x20 - 16x18 + 82x16 + 13x14 - 999x12 + 308x10 + 7923x8 + 12402x6 + 4714x4 - 1313x2 + 101 \( 101^{15} \) $F_5$ (as 20T5) Trivial (GRH)
20.0.1325648358836768000000000000000.1 x20 - 10x18 - 10x17 + 11x16 + 80x15 + 290x14 + 20x13 - 1584x12 - 3590x11 + 5160x10 + 15670x9 + 1091x8 - 43440x7 - 32170x6 + 77300x5 + 49621x4 - 55690x3 - 36870x2 - 17700x + 48220 \( 2^{20}\cdot 5^{15}\cdot 23^{10} \) $F_5$ (as 20T5) $[2, 2]$ (GRH)
20.0.1492547363720394483260280799232.1 x20 - 8x19 + 28x18 - 80x17 + 286x16 - 896x15 + 2080x14 - 4136x13 + 9133x12 - 17560x11 + 29132x10 - 49080x9 + 105208x8 - 212512x7 + 339544x6 - 409424x5 + 410364x4 - 340128x3 + 234400x2 - 97920x + 18496 \( 2^{55}\cdot 23^{10} \) $F_5$ (as 20T5) $[2, 2]$ (GRH)
20.0.1701057228680302987747119277957.1 x20 - 7x19 + 29x18 - 90x17 + 210x16 - 345x15 + 260x14 + 206x13 - 62x12 + 1599x11 - 2242x10 - 4550x9 - 1200x8 + 2598x7 + 8307x6 + 10639x5 + 7581x4 + 4455x3 + 2700x2 + 1215x + 243 \( 7^{16}\cdot 13^{15} \) $F_5$ (as 20T5) Trivial (GRH)
20.0.2648374236155086600616455078125.1 x20 - 10x19 + 50x18 - 165x17 + 386x16 - 640x15 + 880x14 - 1590x13 + 4691x12 - 13170x11 + 29250x10 - 50875x9 + 78876x8 - 111880x7 + 156405x6 - 191825x5 + 181936x4 - 122455x3 + 29985x2 + 10150x + 43025 \( 3^{16}\cdot 5^{15}\cdot 17^{10} \) $F_5$ (as 20T5) $[2]$ (GRH)
20.0.3063157970528898000000000000000.1 x20 - 10x19 + 64x18 - 291x17 + 1069x16 - 3248x15 + 8514x14 - 19384x13 + 39326x12 - 71194x11 + 118256x10 - 179424x9 + 256621x8 - 336594x7 + 417836x6 - 458653x5 + 468466x4 - 389860x3 + 311630x2 - 163125x + 96595 \( 2^{16}\cdot 3^{10}\cdot 5^{15}\cdot 11^{10} \) $F_5$ (as 20T5) $[2, 2, 2]$ (GRH)
20.0.3256311210466946358286064453125.1 x20 - 9x19 + 51x18 - 231x17 + 833x16 - 2458x15 + 5989x14 - 11695x13 + 20202x12 - 33492x11 + 57953x10 - 92370x9 + 130181x8 - 163476x7 + 201934x6 - 235037x5 + 238937x4 - 173528x3 + 91296x2 - 30696x + 10256 \( 5^{10}\cdot 37^{15} \) $F_5$ (as 20T5) $[2]$ (GRH)
20.0.3530940612500000000000000000000.1 x20 + 15x18 + 75x16 + 30x14 - 385x12 + 815x10 + 1745x8 - 2980x6 + 5420x4 - 8400x2 + 3920 \( 2^{20}\cdot 5^{23}\cdot 7^{10} \) $F_5$ (as 20T5) $[2, 2]$ (GRH)
Next

Download all search results for