| 18.2.145887695661298614272.1 |
x18 + 4x16 + 3x14 - 12x12 + 7x10 + 6x8 - 11x6 + 4x4 + 4x2 - 2 |
\( 2^{33}\cdot 19^{8} \) |
$S_3^2$ (as 18T9) |
Trivial
|
| 18.0.338190585776316833283.1 |
x18 - 2x17 + 7x16 - 12x15 + 31x14 - 49x13 + 77x12 - 96x11 + 117x10 - 140x9 + 116x8 - 98x7 + 54x6 - 48x5 + 20x4 + 24x3 - 3x2 + x + 1 |
\( -\,3^{9}\cdot 107^{8} \) |
$S_3^2$ (as 18T9) |
Trivial
|
| 18.2.626487882248000000000.1 |
x18 - 2x17 + 6x16 - x15 + 10x14 + 14x13 + 8x12 + 56x11 + 4x10 + 75x9 - 4x8 + 56x7 - 8x6 + 14x5 - 10x4 - x3 - 6x2 - 2x - 1 |
\( 2^{12}\cdot 5^{9}\cdot 23^{8} \) |
$S_3^2$ (as 18T9) |
Trivial
|
| 18.0.819160565714194205043.1 |
x18 - 6x17 + 18x16 - 45x15 + 99x14 - 150x13 + 100x12 + 123x11 - 390x10 + 379x9 + 78x8 - 738x7 + 1138x6 - 1023x5 + 606x4 - 247x3 + 69x2 - 12x + 1 |
\( -\,3^{21}\cdot 23^{8} \) |
$S_3^2$ (as 18T9) |
Trivial
|
| 18.2.2259436291848000000000.1 |
x18 - 3x17 + 9x16 - 15x15 + 21x14 - 27x13 + 18x12 + 9x11 - 24x10 + 23x9 - 27x8 + 3x7 + 36x6 - 30x5 + 9x3 - 6x2 + 3x - 1 |
\( 2^{12}\cdot 3^{24}\cdot 5^{9} \) |
$S_3^2$ (as 18T9) |
Trivial
(GRH)
|
| 18.2.2426051245220667850752.2 |
x18 - 6x15 + 12x14 + 15x12 - 24x11 + 36x10 - 16x9 - 18x8 + 36x7 - 15x6 + 12x5 + 6x3 - 6x2 + 1 |
\( 2^{33}\cdot 3^{24} \) |
$S_3^2$ (as 18T9) |
Trivial
(GRH)
|
| 18.2.10362839986909376151552.1 |
x18 - 3x16 + 12x14 + 12x12 + 18x10 - 54x8 - 24x6 + 9x2 - 3 |
\( 2^{24}\cdot 3^{31} \) |
$S_3^2$ (as 18T9) |
Trivial
|
| 18.2.41278242816000000000000.1 |
x18 - 6x17 + 15x16 - 16x15 - 20x14 + 96x13 - 102x12 - 48x11 + 210x10 - 164x9 - 36x8 + 144x7 - 56x6 - 24x5 + 18x4 + 16x3 + 9x2 + 2x + 1 |
\( 2^{33}\cdot 3^{9}\cdot 5^{12} \) |
$S_3^2$ (as 18T9) |
Trivial
(GRH)
|
| 18.2.101027699433710814302208.1 |
x18 - 7x15 + 25x12 + 283x9 - 758x6 - 60x3 - 8 |
\( 2^{12}\cdot 3^{21}\cdot 11^{9} \) |
$S_3^2$ (as 18T9) |
Trivial
(GRH)
|
| 18.2.336776297343419427360768.1 |
x18 - 6x17 + 17x16 - 26x15 + 24x14 - 30x13 + 97x12 - 242x11 + 352x10 - 212x9 - 277x8 + 930x7 - 1379x6 + 1388x5 - 1042x4 + 594x3 - 244x2 + 64x - 8 |
\( 2^{12}\cdot 3^{9}\cdot 11^{15} \) |
$S_3^2$ (as 18T9) |
Trivial
(GRH)
|
| 18.2.435848050125000000000000.2 |
x18 - 3x15 - 30x12 + 145x9 + 30x6 - 3x3 - 1 |
\( 2^{12}\cdot 3^{20}\cdot 5^{15} \) |
$S_3^2$ (as 18T9) |
Trivial
(GRH)
|
| 18.2.780075027072165202624512.1 |
x18 - 2x16 - 16x14 + 50x12 + 60x10 - 408x8 + 428x6 + 80x4 - 32x2 - 8 |
\( 2^{33}\cdot 3^{8}\cdot 7^{12} \) |
$S_3^2$ (as 18T9) |
$[3]$
(GRH)
|
| 18.2.794280046581000000000000.1 |
x18 - 9x17 + 43x16 - 125x15 + 238x14 - 280x13 + 143x12 + 124x11 - 309x10 + 172x9 + 286x8 - 682x7 + 691x6 - 397x5 + 120x4 - 46x3 + 70x2 - 60x + 15 |
\( 2^{12}\cdot 3^{9}\cdot 5^{12}\cdot 7^{9} \) |
$S_3^2$ (as 18T9) |
Trivial
|
| 18.2.1036390468759313279090688.1 |
x18 - 6x17 + 18x16 - 32x15 + 20x14 + 52x13 - 199x12 + 436x11 - 726x10 + 1002x9 - 1240x8 + 1364x7 - 1337x6 + 1170x5 - 876x4 + 558x3 - 288x2 + 108x - 27 |
\( 2^{24}\cdot 3^{9}\cdot 11^{12} \) |
$S_3^2$ (as 18T9) |
Trivial
(GRH)
|
| 18.2.1062353018033006514536448.1 |
x18 - 6x15 - 30x12 - 38x9 - 39x6 + 12x3 - 8 |
\( 2^{18}\cdot 3^{39} \) |
$S_3^2$ (as 18T9) |
Trivial
(GRH)
|
| 18.2.1693656506029892089024512.2 |
x18 - 20x15 + 141x12 - 378x9 + 249x6 - 58x3 + 1 |
\( 2^{12}\cdot 3^{20}\cdot 17^{9} \) |
$S_3^2$ (as 18T9) |
Trivial
(GRH)
|
| 18.2.2360626893120550220070912.1 |
x18 - 10x15 + 63x12 + 106x9 + 113x6 + 108x3 - 27 |
\( 2^{24}\cdot 3^{20}\cdot 7^{9} \) |
$S_3^2$ (as 18T9) |
Trivial
|
| 18.0.4941387170271576000000000.2 |
x18 - 12x15 + 159x12 - 196x9 + 159x6 - 12x3 + 1 |
\( -\,2^{12}\cdot 3^{31}\cdot 5^{9} \) |
$S_3^2$ (as 18T9) |
$[2]$
(GRH)
|
| 18.2.5305774073297600589594624.1 |
x18 - 6x15 + 51x12 - 164x9 + 555x6 - 798x3 - 125 |
\( 2^{33}\cdot 3^{31} \) |
$S_3^2$ (as 18T9) |
$[3]$
|
| 18.2.7693632118668862546771968.1 |
x18 - x16 - 8x15 - 18x14 - 64x13 - 106x12 - 192x11 - 292x10 - 368x9 - 292x8 - 192x7 - 106x6 - 64x5 - 18x4 - 8x3 - x2 + 1 |
\( 2^{24}\cdot 3^{9}\cdot 13^{12} \) |
$S_3^2$ (as 18T9) |
$[3]$
(GRH)
|
| 18.0.14281868906496000000000000.3 |
x18 - 6x15 + 58x12 - 192x9 + 156x6 + 56x3 + 8 |
\( -\,2^{24}\cdot 3^{20}\cdot 5^{12} \) |
$S_3^2$ (as 18T9) |
$[3]$
(GRH)
|
| 18.0.15917322219892801768783872.1 |
x18 - 6x15 + 33x12 + 100x9 + 153x6 + 66x3 + 27 |
\( -\,2^{33}\cdot 3^{32} \) |
$S_3^2$ (as 18T9) |
$[3]$
(GRH)
|
| 18.0.18075490334784000000000000.1 |
x18 - 6x17 + 24x16 - 72x15 + 162x14 - 282x13 + 465x12 - 732x11 + 1029x10 - 1198x9 + 1134x8 - 516x7 + 48x6 - 90x5 + 453x4 + 72x3 + 120x2 - 120x + 20 |
\( -\,2^{18}\cdot 3^{24}\cdot 5^{12} \) |
$S_3^2$ (as 18T9) |
Trivial
(GRH)
|
| 18.0.20145360934551827238617088.1 |
x18 + 36x12 - 36x9 + 75x6 + 24x3 + 8 |
\( -\,2^{27}\cdot 3^{36} \) |
$S_3^2$ (as 18T9) |
Trivial
(GRH)
|
| 18.2.20145360934551827238617088.1 |
x18 - 6x12 + 9x6 - 8 |
\( 2^{27}\cdot 3^{36} \) |
$S_3^2$ (as 18T9) |
$[2]$
(GRH)
|
| 18.0.25723826191600935889563648.1 |
x18 - 13x15 + 153x12 + 25x9 + 722x6 + 108x3 + 216 |
\( -\,2^{12}\cdot 3^{20}\cdot 23^{9} \) |
$S_3^2$ (as 18T9) |
$[9]$
(GRH)
|
| 18.2.58498535041007616000000000.1 |
x18 - 12x16 - 6x15 + 60x14 + 60x13 - 171x12 - 228x11 + 468x10 + 620x9 - 972x8 - 1308x7 + 2259x6 + 1140x5 - 2700x4 + 114x3 + 1188x2 - 729 |
\( 2^{33}\cdot 3^{20}\cdot 5^{9} \) |
$S_3^2$ (as 18T9) |
$[2]$
(GRH)
|
| 18.0.67804051110532132041289728.1 |
x18 - 8x15 + 15x12 + 20x9 + 15x6 - 8x3 + 1 |
\( -\,2^{12}\cdot 3^{20}\cdot 7^{15} \) |
$S_3^2$ (as 18T9) |
$[3, 3]$
(GRH)
|
| 18.2.67990593154112416930332672.3 |
x18 - 9x16 - 6x15 + 45x14 + 18x13 - 123x12 + 36x11 + 216x10 - 260x9 - 72x8 + 144x7 - 156x6 - 144x5 + 540x4 - 336x3 + 108x2 - 72x + 4 |
\( 2^{24}\cdot 3^{39} \) |
$S_3^2$ (as 18T9) |
Trivial
(GRH)
|
| 18.2.67990593154112416930332672.4 |
x18 - 9x16 + 27x14 - 39x12 + 180x10 - 180x8 + 936x6 - 576x4 + 432x2 - 48 |
\( 2^{24}\cdot 3^{39} \) |
$S_3^2$ (as 18T9) |
Trivial
(GRH)
|
| 18.2.76924344897355372207607808.1 |
x18 - 22x15 + 145x12 - 44x9 - 2701x6 - 2290x3 - 2197 |
\( 2^{12}\cdot 3^{8}\cdot 17^{15} \) |
$S_3^2$ (as 18T9) |
Trivial
(GRH)
|
| 18.2.77171478574802807668690944.2 |
x18 - 12x16 - 21x15 + 60x14 + 192x13 - 86x12 - 732x11 - 354x10 + 1373x9 + 1848x8 - 366x7 - 2804x6 - 3132x5 - 798x4 + 2971x3 + 4788x2 + 3300x + 997 |
\( 2^{12}\cdot 3^{21}\cdot 23^{9} \) |
$S_3^2$ (as 18T9) |
$[3]$
(GRH)
|
| 18.2.137186176988421259210985472.1 |
x18 - 6x17 + 21x16 - 63x15 + 177x14 - 387x13 + 684x12 - 939x11 + 1065x10 - 1062x9 + 945x8 - 639x7 + 303x6 - 177x5 + 90x4 + 45x3 - 78x2 + 36x - 8 |
\( 2^{12}\cdot 3^{24}\cdot 17^{9} \) |
$S_3^2$ (as 18T9) |
$[3]$
(GRH)
|
| 18.2.164729828637331848000000000.1 |
x18 - 3x17 + 3x16 - x15 - 58x14 + 272x13 - 381x12 - 328x11 + 2379x10 - 5914x9 + 9766x8 - 10356x7 + 6027x6 - 1153x5 + 72x4 - 1116x3 + 1166x2 - 440x + 55 |
\( 2^{12}\cdot 3^{8}\cdot 5^{9}\cdot 11^{12} \) |
$S_3^2$ (as 18T9) |
Trivial
(GRH)
|
| 18.2.207189157034762041833345024.1 |
x18 - 20x15 + 96x12 + 288x9 - 1200x6 + 896x3 + 64 |
\( 2^{12}\cdot 3^{20}\cdot 29^{9} \) |
$S_3^2$ (as 18T9) |
$[2]$
(GRH)
|
| 18.0.208728361158759000000000000.1 |
x18 - 6x17 + 6x16 + 21x15 - 18x14 - 84x13 + 41x12 + 270x11 - 184x10 - 305x9 + 96x8 + 240x7 + 316x6 - 396x5 + 32x4 - 116x3 + 136x2 + 16x + 16 |
\( -\,2^{12}\cdot 3^{9}\cdot 5^{12}\cdot 13^{9} \) |
$S_3^2$ (as 18T9) |
$[12]$
(GRH)
|
| 18.2.342764853755904000000000000.1 |
x18 - 6x16 - 12x15 + 36x14 + 24x13 - 116x12 + 216x11 - 216x10 - 40x9 + 468x8 - 1344x7 + 2059x6 - 2304x5 + 2346x4 - 1712x3 + 1020x2 - 480x + 160 |
\( 2^{27}\cdot 3^{21}\cdot 5^{12} \) |
$S_3^2$ (as 18T9) |
Trivial
(GRH)
|
| 18.2.513058606471919567779135488.1 |
x18 - 2x16 - 12x14 + 74x12 + 140x10 - 1356x8 + 3457x6 - 3854x4 + 2004x2 - 288 |
\( 2^{27}\cdot 3^{8}\cdot 17^{12} \) |
$S_3^2$ (as 18T9) |
Trivial
(GRH)
|
| 18.2.543924745232899335442661376.1 |
x18 - 6x15 - 75x12 - 380x9 - 849x6 - 726x3 - 125 |
\( 2^{27}\cdot 3^{39} \) |
$S_3^2$ (as 18T9) |
$[3]$
(GRH)
|
| 18.2.747570025601664552000000000.1 |
x18 - 27x15 - 209x12 - 1161x9 - 1574x6 + 540x3 - 216 |
\( 2^{12}\cdot 3^{9}\cdot 5^{9}\cdot 7^{15} \) |
$S_3^2$ (as 18T9) |
$[6]$
(GRH)
|
| 18.2.1132821652907969230762856448.1 |
x18 - 27x15 + 234x12 + 1053x9 + 864x6 + 243x3 - 27 |
\( 2^{12}\cdot 3^{21}\cdot 31^{9} \) |
$S_3^2$ (as 18T9) |
$[2]$
(GRH)
|
| 18.0.1156831381426176000000000000.1 |
x18 - 6x17 + 24x16 - 78x15 + 186x14 - 264x13 + 165x12 + 90x11 - 276x10 + 324x9 - 276x8 + 90x7 + 165x6 - 264x5 + 186x4 - 78x3 + 24x2 - 6x + 1 |
\( -\,2^{24}\cdot 3^{24}\cdot 5^{12} \) |
$S_3^2$ (as 18T9) |
$[3, 3]$
(GRH)
|
| 18.2.1200757082375992968000000000.1 |
x18 - 6x15 - 36x12 - 32x9 - 144x6 - 64 |
\( 2^{12}\cdot 3^{36}\cdot 5^{9} \) |
$S_3^2$ (as 18T9) |
$[2]$
(GRH)
|
| 18.2.1223926265155689082549112832.1 |
x18 - 6x15 + 53x12 - 134x9 - 23x6 - 44x3 + 1 |
\( 2^{12}\cdot 3^{9}\cdot 19^{15} \) |
$S_3^2$ (as 18T9) |
$[3]$
(GRH)
|
| 18.0.1289303099811316943271493632.3 |
x18 - 6x15 - 45x12 + 160x9 + 807x6 + 54x3 + 1 |
\( -\,2^{33}\cdot 3^{36} \) |
$S_3^2$ (as 18T9) |
$[3]$
(GRH)
|
| 18.2.1289303099811316943271493632.3 |
x18 - 18x12 + 192x6 - 512 |
\( 2^{33}\cdot 3^{36} \) |
$S_3^2$ (as 18T9) |
Trivial
(GRH)
|
| 18.2.1289303099811316943271493632.5 |
x18 - 36x12 - 112x9 + 36x6 + 96x3 - 64 |
\( 2^{33}\cdot 3^{36} \) |
$S_3^2$ (as 18T9) |
Trivial
(GRH)
|
| 18.2.2631248629891740460251353088.1 |
x18 - 6x17 + 17x16 - 41x15 + 171x14 - 637x13 + 1498x12 - 2355x11 + 2713x10 - 2370x9 + 577x8 + 3413x7 - 7721x6 + 8155x5 - 4546x4 + 1387x3 - 1088x2 + 1254x - 638 |
\( 2^{12}\cdot 3^{9}\cdot 7^{12}\cdot 11^{9} \) |
$S_3^2$ (as 18T9) |
$[6]$
(GRH)
|
| 18.2.4675625869369624999536070656.1 |
x18 - 29x15 + 331x12 - 1493x9 + 200x6 + 11712x3 - 512 |
\( 2^{12}\cdot 3^{20}\cdot 41^{9} \) |
$S_3^2$ (as 18T9) |
$[2]$
(GRH)
|
| 18.0.5492128139953102695344467968.1 |
x18 - 9x17 + 48x16 - 180x15 + 441x14 - 651x13 + 561x12 - 441x11 + 975x10 - 2191x9 + 3441x8 - 4221x7 + 4194x6 - 3234x5 + 1869x4 - 801x3 + 258x2 - 60x + 8 |
\( -\,2^{12}\cdot 3^{24}\cdot 7^{15} \) |
$S_3^2$ (as 18T9) |
$[3, 3]$
(GRH)
|