| 18.4.16637719789350377679051.2 |
x18 - 6x17 + 12x16 - 4x15 - 9x14 - 30x13 + 134x12 - 186x11 + 102x10 - 57x9 + 258x8 - 618x7 + 879x6 - 867x5 + 612x4 - 296x3 + 90x2 - 15x + 1 |
\( -\,3^{27}\cdot 1297^{3} \) |
18T767 |
Trivial
|
| 18.6.9935038298290147032825856.3 |
x18 - 7x16 - 5x14 + 104x12 + 13x10 - 937x8 + 942x6 + 1307x4 - 776x2 - 1399 |
\( 2^{18}\cdot 7^{12}\cdot 1399^{3} \) |
18T767 |
Trivial
(GRH)
|
| 18.6.9935038298290147032825856.4 |
x18 - 4x16 + 4x14 - 75x12 + 172x10 - 209x8 + 1359x6 - 1749x4 + 2097x2 - 1399 |
\( 2^{18}\cdot 7^{12}\cdot 1399^{3} \) |
18T767 |
Trivial
(GRH)
|
| 18.2.14325976053911690018397673.1 |
x18 - 3x17 + 15x16 - 20x15 + 48x14 - 7x13 + 2x12 + 194x11 - 241x10 + 461x9 - 156x8 - 253x7 + 951x6 - 942x5 + 451x4 - 125x3 - 3x2 + 5x - 1 |
\( 7^{13}\cdot 52879^{3} \) |
18T767 |
Trivial
(GRH)
|
| 18.4.21579122566787439849729147.1 |
x18 - 3x16 - 2x15 - 15x14 + 45x13 + 16x12 + 315x11 - 33x10 + 695x9 - 1029x8 + 942x7 - 4292x6 + 4692x5 - 13098x4 + 17622x3 - 19401x2 + 17055x - 3833 |
\( -\,3^{27}\cdot 1297^{4} \) |
18T767 |
Trivial
(GRH)
|
| 18.6.60006020121228767347575793.1 |
x18 - 6x17 + 9x16 + 15x15 - 117x14 + 351x13 - 553x12 + 291x11 + 1175x10 - 4176x9 + 8071x8 - 8486x7 + 3598x6 + 8661x5 - 23714x4 + 31930x3 - 26725x2 + 14295x + 911 |
\( 7^{12}\cdot 41^{6}\cdot 97^{3} \) |
18T767 |
Trivial
(GRH)
|
| 18.6.60006020121228767347575793.2 |
x18 - x17 - 7x16 + 41x15 - 67x14 - 118x13 + 368x12 - 395x11 - 186x10 + 1462x9 - 1040x8 - 1299x7 + 2799x6 + 212x5 - 2903x4 + 1658x3 + 1560x2 - 3345x - 2309 |
\( 7^{12}\cdot 41^{6}\cdot 97^{3} \) |
18T767 |
Trivial
(GRH)
|
| 18.0.100752814466102077897834496.3 |
x18 + 21x16 + 174x14 + 749x12 + 1685x10 + 728x8 - 5081x6 - 7371x4 + 5362x2 + 11081 |
\( -\,2^{18}\cdot 7^{13}\cdot 1583^{3} \) |
18T767 |
Trivial
(GRH)
|
| 18.0.100752814466102077897834496.4 |
x18 + x16 - 14x14 + 68x12 + 7x10 - 313x8 + 2155x6 - 1176x4 + 2471x2 + 11081 |
\( -\,2^{18}\cdot 7^{13}\cdot 1583^{3} \) |
18T767 |
Trivial
(GRH)
|
| 18.8.161536237646646866899894272.2 |
x18 - 6x16 - 9x14 + 37x12 + 183x10 + 159x8 - 1210x6 - 1677x4 + 1224x2 + 1297 |
\( -\,2^{18}\cdot 3^{24}\cdot 1297^{3} \) |
18T767 |
Trivial
(GRH)
|
| 18.8.161536237646646866899894272.3 |
x18 - 15x16 + 75x14 - 134x12 - 21x10 + 525x8 - 1600x6 + 2493x4 - 2028x2 + 1297 |
\( -\,2^{18}\cdot 3^{24}\cdot 1297^{3} \) |
18T767 |
Trivial
(GRH)
|
| 18.12.569862261508654647313096707.2 |
x18 - 9x16 - 30x15 - 30x14 + 186x13 + 604x12 + 462x11 - 1236x10 - 3371x9 - 1725x8 + 3900x7 + 6721x6 + 1611x5 - 5106x4 - 3418x3 + 474x2 + 372x - 53 |
\( -\,3^{27}\cdot 73^{3}\cdot 577^{3} \) |
18T767 |
Trivial
(GRH)
|
| 18.8.569862261508654647313096707.3 |
x18 - 15x16 - 7x15 + 48x14 + 57x13 + 91x12 + 63x11 - 42x10 - 506x9 - 1038x8 - 1449x7 - 299x6 + 1320x5 + 783x4 - 933x3 - 294x2 + 456x - 107 |
\( -\,3^{27}\cdot 73^{3}\cdot 577^{3} \) |
18T767 |
Trivial
(GRH)
|
| 18.8.569862261508654647313096707.4 |
x18 - 6x17 + 15x16 - 22x15 + 54x14 - 252x13 + 656x12 - 513x11 - 1827x10 + 7335x9 - 13560x8 + 14874x7 - 7305x6 - 6912x5 + 16947x4 - 15632x3 + 9411x2 - 2958x - 557 |
\( -\,3^{27}\cdot 73^{3}\cdot 577^{3} \) |
18T767 |
Trivial
(GRH)
|
| 18.6.701972826641672810901485977.1 |
x18 - 4x17 + 7x16 - 24x15 + 42x14 - 29x13 + 30x12 + 89x11 - 328x10 + 293x9 - 935x8 + 637x7 + 803x6 + 1599x5 - 1616x4 + 4184x3 - 5151x2 + 500x + 239 |
\( 7^{15}\cdot 52879^{3} \) |
18T767 |
Trivial
(GRH)
|
| 18.6.703567041275767323081039137.2 |
x18 - 9x17 + 44x16 - 104x15 + 90x14 + 289x13 - 1037x12 + 1483x11 - 519x10 - 1649x9 + 1871x8 + 640x7 - 5579x6 + 3195x5 + 4563x4 - 88x3 - 778x2 - 187x - 13 |
\( 7^{15}\cdot 52919^{3} \) |
18T767 |
Trivial
(GRH)
|
| 18.2.794618104817141695294816409.1 |
x18 - 7x17 + 28x16 - 70x15 + 155x14 - 272x13 + 617x12 - 1813x11 + 6137x10 - 13773x9 + 19699x8 + 2327x7 - 94314x6 + 278632x5 - 489075x4 + 602875x3 - 513078x2 + 281383x - 81229 |
\( 7^{12}\cdot 41^{3}\cdot 97^{6} \) |
18T767 |
$[2]$
(GRH)
|
| 18.14.1540738707041918120513187393.1 |
x18 - 15x16 - x15 + 78x14 + 18x13 - 244x12 + 63x11 + 867x10 - 1361x9 - 2319x8 + 5190x7 + 2455x6 - 7470x5 - 261x4 + 4295x3 - 705x2 - 843x + 233 |
\( 3^{24}\cdot 73^{4}\cdot 577^{3} \) |
18T767 |
Trivial
(GRH)
|
| 18.6.1540738707041918120513187393.1 |
x18 - 3x17 + 12x15 - 51x14 + 129x13 - 68x12 - 303x11 + 981x10 - 1794x9 + 1275x8 + 1227x7 - 5820x6 + 5811x5 - 132x4 - 4633x3 + 2895x2 - 1545x + 1819 |
\( 3^{24}\cdot 73^{4}\cdot 577^{3} \) |
18T767 |
Trivial
(GRH)
|
| 18.2.4361478416459465406297145344.1 |
x18 - 15x16 + 54x14 + 78x12 - 882x10 + 2241x8 + 9846x6 - 11610x4 - 51273x2 - 35019 |
\( 2^{18}\cdot 3^{27}\cdot 1297^{3} \) |
18T767 |
Trivial
(GRH)
|
| 18.8.5757831284198035381221851136.1 |
x18 - 3x16 - 21x14 + 52x12 + 60x10 - 99x8 + 71x6 - 15x4 - 6x2 + 1 |
\( -\,2^{30}\cdot 3^{18}\cdot 7^{12} \) |
18T767 |
Trivial
(GRH)
|
| 18.8.5757831284198035381221851136.2 |
x18 - 3x16 - 18x14 + 39x12 + 60x10 - 72x8 - 64x6 - 48x4 + 64 |
\( -\,2^{30}\cdot 3^{18}\cdot 7^{12} \) |
18T767 |
Trivial
(GRH)
|
| 18.14.12178167588536804870357659257.1 |
x18 - 3x17 - 9x16 + 17x15 - 39x14 + 360x13 + 425x12 - 3570x11 - 21x10 + 10051x9 - 3309x8 - 8442x7 + 4129x6 - 2724x5 - 2106x4 + 7480x3 + 1950x2 - 3066x - 1151 |
\( 3^{24}\cdot 73^{3}\cdot 577^{4} \) |
18T767 |
Trivial
(GRH)
|
| 18.10.12178167588536804870357659257.3 |
x18 - 3x17 + 3x16 - 8x15 - 33x14 + 168x13 - 404x12 - 306x11 + 1686x10 + 1763x9 + 4083x8 - 5301x7 - 10367x6 - 11169x5 - 28359x4 + 3198x3 + 23886x2 + 2280x - 2141 |
\( 3^{24}\cdot 73^{3}\cdot 577^{4} \) |
18T767 |
Trivial
(GRH)
|
| 18.12.41599945090131789253856059611.1 |
x18 - 6x17 + 101x15 - 390x14 + 459x13 + 1164x12 - 5115x11 + 6198x10 + 5574x9 - 25929x8 + 22929x7 + 16988x6 - 42879x5 + 16926x4 + 14308x3 - 11655x2 + 318x + 1009 |
\( -\,3^{27}\cdot 73^{4}\cdot 577^{3} \) |
18T767 |
Trivial
(GRH)
|
| 18.4.41599945090131789253856059611.1 |
x18 + 15x16 - 2x15 - 54x14 + 240x13 - 1326x12 + 1836x11 - 3612x10 + 876x9 - 1431x8 - 2298x7 - 3535x6 + 8928x5 - 13620x4 + 21989x3 - 16191x2 + 12846x - 6731 |
\( -\,3^{27}\cdot 73^{4}\cdot 577^{3} \) |
18T767 |
$[2, 2]$
(GRH)
|
| 18.4.328810524890493731499656799939.1 |
x18 - 9x17 + 36x16 - 81x15 + 663x13 - 2804x12 + 6810x11 - 9780x10 + 2806x9 + 26325x8 - 82590x7 + 133855x6 - 118608x5 - 10557x4 + 162203x3 - 207960x2 - 124860x + 447697 |
\( -\,3^{27}\cdot 73^{3}\cdot 577^{4} \) |
18T767 |
$[2, 4]$
(GRH)
|
| 18.10.536495523810946581168977084416.3 |
x18 - 34x16 + 407x14 - 1958x12 + 641x10 + 26152x8 - 68129x6 - 10243x4 + 116709x2 - 52879 |
\( 2^{18}\cdot 7^{12}\cdot 52879^{3} \) |
18T767 |
Trivial
(GRH)
|
| 18.2.536495523810946581168977084416.3 |
x18 + 25x16 + 258x14 + 1957x12 + 12668x10 + 52600x8 + 111121x6 + 83476x4 - 37538x2 - 52879 |
\( 2^{18}\cdot 7^{12}\cdot 52879^{3} \) |
18T767 |
Trivial
(GRH)
|
| 18.6.536495523810946581168977084416.3 |
x18 + 11x16 - 68x14 - 1433x12 - 6123x10 + 1484x8 + 69911x6 + 150632x4 + 60735x2 - 52879 |
\( 2^{18}\cdot 7^{12}\cdot 52879^{3} \) |
18T767 |
Trivial
(GRH)
|
| 18.10.536495523810946581168977084416.4 |
x18 - 28x16 + 191x14 + 221x12 - 2640x10 - 536x8 - 6025x6 - 2575x4 + 65319x2 - 52879 |
\( 2^{18}\cdot 7^{12}\cdot 52879^{3} \) |
18T767 |
Trivial
(GRH)
|
| 18.6.536495523810946581168977084416.4 |
x18 - 8x16 + 52x14 - 159x12 - 6224x10 + 33013x8 + 46547x6 - 219805x4 - 330691x2 - 52879 |
\( 2^{18}\cdot 7^{12}\cdot 52879^{3} \) |
18T767 |
Trivial
(GRH)
|
| 18.12.757543287754796256482850550567.1 |
x18 - x17 - 32x16 + 27x15 + 202x14 + 590x13 + 528x12 - 13126x11 - 14019x10 + 103449x9 + 75962x8 - 452057x7 - 26460x6 + 931975x5 - 604143x4 - 542146x3 + 958638x2 - 33940x - 435877 |
\( -\,7^{13}\cdot 52879^{4} \) |
18T767 |
Trivial
(GRH)
|
| 18.4.757543287754796256482850550567.1 |
x18 - 4x17 + 26x15 - 285x14 + 949x13 - 2569x12 + 3432x11 + 3197x10 - 40794x9 + 157050x8 - 431269x7 + 931848x6 - 1614434x5 + 2341399x4 - 2607975x3 + 2270524x2 - 1269256x + 307943 |
\( -\,7^{13}\cdot 52879^{4} \) |
18T767 |
Trivial
(GRH)
|
| 18.8.2649964533923085507853361086464.1 |
x18 - 9x16 - 2x15 + 51x14 - 162x13 - 201x12 + 588x11 + 201x10 + 226x9 + 5700x8 + 4320x7 - 25736x6 + 25446x5 + 26577x4 - 72854x3 + 38298x2 - 4812x - 223 |
\( -\,2^{18}\cdot 3^{18}\cdot 7^{12}\cdot 1373^{2} \) |
18T767 |
Trivial
(GRH)
|
| 18.8.2649964533923085507853361086464.2 |
x18 - 6x16 - 46x15 + 87x14 + 342x13 - 304x12 - 1716x11 + 570x10 + 4994x9 - 7218x8 + 22704x7 - 36159x6 - 12612x5 + 47868x4 - 1012x3 - 17220x2 - 1776x + 776 |
\( -\,2^{18}\cdot 3^{18}\cdot 7^{12}\cdot 1373^{2} \) |
18T767 |
Trivial
(GRH)
|
| 18.12.3755468666676626068182839590912.3 |
x18 - 35x16 + 391x14 - 1176x12 - 4146x10 + 29204x8 - 124445x6 + 478709x4 - 750379x2 + 370153 |
\( -\,2^{18}\cdot 7^{13}\cdot 52879^{3} \) |
18T767 |
Trivial
(GRH)
|
| 18.4.3755468666676626068182839590912.3 |
x18 + 53x16 + 1072x14 + 10321x12 + 46148x10 + 51409x8 - 224783x6 - 405020x4 + 368109x2 + 370153 |
\( -\,2^{18}\cdot 7^{13}\cdot 52879^{3} \) |
18T767 |
$[3]$
(GRH)
|
| 18.0.5532813802997213476490534191104.1 |
x18 + 48x16 + 867x14 + 8006x12 + 42207x10 + 132831x8 + 251956x6 + 280899x4 + 168873x2 + 42121 |
\( -\,2^{18}\cdot 3^{24}\cdot 73^{3}\cdot 577^{3} \) |
18T767 |
$[2, 1252]$
(GRH)
|
| 18.6.8210596569826381664214775617297.1 |
x18 - 3x17 + 6x16 + 2x15 - 405x14 + 1071x13 - 2765x12 + 3558x11 + 25806x10 - 61148x9 + 248619x8 - 292068x7 - 38649x6 + 875178x5 - 4760613x4 + 6986556x3 - 9791766x2 + 10095192x + 2539377 |
\( 3^{24}\cdot 73^{6}\cdot 577^{3} \) |
18T767 |
Trivial
(GRH)
|
| 18.10.64897455079312633154135966180553.1 |
x18 - 3x17 - 54x15 - 105x14 + 759x13 + 86x12 + 3957x11 + 8847x10 - 15539x9 + 2514x8 - 148635x7 - 429672x6 - 539649x5 - 1230822x4 - 122463x3 + 1477521x2 - 73305x - 224019 |
\( 3^{24}\cdot 73^{5}\cdot 577^{4} \) |
18T767 |
Trivial
(GRH)
|
| 18.0.149385972680924763865244423159808.1 |
x18 + 75x16 + 2178x14 + 32829x12 + 283689x10 + 1444041x8 + 4240305x6 + 6661035x4 + 4752513x2 + 1137267 |
\( -\,2^{18}\cdot 3^{27}\cdot 73^{3}\cdot 577^{3} \) |
18T767 |
$[2, 4, 1548]$
(GRH)
|
| 18.18.149385972680924763865244423159808.2 |
x18 - 57x16 + 1377x14 - 18375x12 + 147960x10 - 737208x8 + 2238930x6 - 3913515x4 + 3465261x2 - 1137267 |
\( 2^{18}\cdot 3^{27}\cdot 73^{3}\cdot 577^{3} \) |
18T767 |
Trivial
(GRH)
|
| 18.18.10905176005707507762162842890665984.1 |
x18 - 96x16 + 3861x14 - 84954x12 + 1119672x10 - 9071460x8 + 44400978x6 - 122974389x4 + 167095467x2 - 83020491 |
\( 2^{18}\cdot 3^{27}\cdot 73^{4}\cdot 577^{3} \) |
18T767 |
Trivial
(GRH)
|