| 18.2.84452981700195737623001.1 |
x18 - 3x17 + 4x16 - 2x15 - 12x14 + 26x13 - 65x12 + 10x11 + 128x10 - 355x9 + 466x8 - 394x7 + 130x6 - 364x5 + 188x4 + 42x3 + 210x2 - 136x - 113 |
\( 7^{12}\cdot 41^{3}\cdot 97^{4} \) |
18T765 |
Trivial
(GRH)
|
| 18.4.1629111589155949891312943.1 |
x18 - 2x17 + 4x16 + 3x15 - 28x14 + 37x13 + 8x12 - 126x11 + 183x10 - 54x9 - 263x8 + 278x7 - 198x6 - 495x5 - 5x4 - 131x3 - 45x2 + 217x + 29 |
\( -\,7^{15}\cdot 7001^{3} \) |
18T765 |
Trivial
(GRH)
|
| 18.6.9935038298290147032825856.1 |
x18 - 13x16 + 87x14 - 400x12 + 1276x10 - 2852x8 + 4782x6 - 5857x4 + 4262x2 - 1399 |
\( 2^{18}\cdot 7^{12}\cdot 1399^{3} \) |
18T765 |
Trivial
(GRH)
|
| 18.6.9935038298290147032825856.2 |
x18 - 12x16 + 35x14 + 32x12 - 153x10 - 270x8 + 429x6 + 1033x4 - 465x2 - 1399 |
\( 2^{18}\cdot 7^{12}\cdot 1399^{3} \) |
18T765 |
Trivial
(GRH)
|
| 18.10.14325976053911690018397673.1 |
x18 - 2x17 - 9x16 + 31x15 - 52x14 + 30x13 + 240x12 - 570x11 + 101x10 + 889x9 - 848x8 + 34x7 + 340x6 - 401x5 + 83x4 - 53x3 + 3x2 + 15x + 1 |
\( 7^{13}\cdot 52879^{3} \) |
18T765 |
Trivial
(GRH)
|
| 18.8.28967372723167138004689343.1 |
x18 - 3x17 + 9x16 + 2x15 - 58x14 + 260x13 - 456x12 + 186x11 + 1564x10 - 4448x9 + 4752x8 - 274x7 - 9044x6 + 15315x5 - 13459x4 - 6698x3 + 22326x2 - 6125x - 3569 |
\( -\,7^{15}\cdot 41^{3}\cdot 97^{4} \) |
18T765 |
Trivial
(GRH)
|
| 18.2.60006020121228767347575793.1 |
x18 - 3x17 + 22x16 - 31x15 + 128x14 + 18x13 + 208x12 + 1052x11 - 219x10 + 3908x9 - 1567x8 + 7050x7 - 4949x6 + 9227x5 - 5021x4 + 4131x3 - 1581x2 + 856x - 631 |
\( 7^{12}\cdot 41^{6}\cdot 97^{3} \) |
18T765 |
$[2]$
(GRH)
|
| 18.4.89966113815594302831591424.1 |
x18 + 9x16 + 24x14 + 8x12 - 114x10 - 306x8 - 144x6 + 9x2 + 1 |
\( -\,2^{24}\cdot 3^{18}\cdot 7^{12} \) |
18T765 |
Trivial
(GRH)
|
| 18.0.100752814466102077897834496.1 |
x18 + 16x16 + 105x14 + 348x12 + 455x10 - 832x8 - 4019x6 - 1393x4 + 11081x2 + 11081 |
\( -\,2^{18}\cdot 7^{13}\cdot 1583^{3} \) |
18T765 |
Trivial
(GRH)
|
| 18.0.100752814466102077897834496.2 |
x18 + 14x16 + 34x14 - 42x12 + 404x10 + 2065x8 + 890x6 + 1729x4 + 11081x2 + 11081 |
\( -\,2^{18}\cdot 7^{13}\cdot 1583^{3} \) |
18T765 |
$[7]$
(GRH)
|
| 18.4.161536237646646866899894272.1 |
x18 + 6x16 - 24x14 - 178x12 - 90x10 + 1005x8 + 1624x6 - 123x4 - 261x2 + 1297 |
\( -\,2^{18}\cdot 3^{24}\cdot 1297^{3} \) |
18T765 |
Trivial
(GRH)
|
| 18.8.161536237646646866899894272.1 |
x18 - 12x16 + 33x14 + 143x12 - 1005x10 + 1833x8 - 182x6 - 2001x4 + 1297 |
\( -\,2^{18}\cdot 3^{24}\cdot 1297^{3} \) |
18T765 |
Trivial
(GRH)
|
| 18.6.209196186607145570502267584.1 |
x18 - 4x17 + 14x16 - 52x15 + 105x14 - 188x13 + 235x12 + 76x11 - 1116x10 + 3110x9 - 6015x8 + 9376x7 - 11365x6 + 10146x5 - 7406x4 + 4192x3 - 884x2 - 216x - 8 |
\( 2^{6}\cdot 7^{12}\cdot 113^{3}\cdot 547^{3} \) |
18T765 |
Trivial
(GRH)
|
| 18.12.569862261508654647313096707.1 |
x18 - 6x17 + 43x15 + 12x14 - 177x13 - 353x12 + 861x11 + 1545x10 - 2590x9 - 3834x8 + 4545x7 + 8122x6 - 8607x5 - 8790x4 + 11961x3 + 1380x2 - 6129x + 2017 |
\( -\,3^{27}\cdot 73^{3}\cdot 577^{3} \) |
18T765 |
Trivial
(GRH)
|
| 18.8.569862261508654647313096707.1 |
x18 - 6x17 + 3x16 + 48x15 - 168x14 + 300x13 - 138x12 - 1041x11 + 2739x10 - 1109x9 - 4908x8 + 6909x7 + 384x6 - 7284x5 + 4857x4 + 948x3 - 2631x2 + 1230x - 107 |
\( -\,3^{27}\cdot 73^{3}\cdot 577^{3} \) |
18T765 |
Trivial
(GRH)
|
| 18.8.569862261508654647313096707.2 |
x18 - 6x17 + 15x16 - 11x15 - 12x14 + 12x13 + 82x12 - 27x11 - 396x10 + 566x9 + 930x8 - 1380x7 - 2879x6 - 675x5 + 3078x4 + 2763x3 - 72x2 - 549x - 53 |
\( -\,3^{27}\cdot 73^{3}\cdot 577^{3} \) |
18T765 |
Trivial
(GRH)
|
| 18.6.703567041275767323081039137.1 |
x18 - 8x17 + 33x16 - 91x15 + 130x14 + 13x13 - 718x12 + 2179x11 - 4059x10 + 5410x9 - 5220x8 + 4658x7 - 4953x6 + 6215x5 - 6579x4 + 5188x3 - 3086x2 + 677x - 41 |
\( 7^{15}\cdot 52919^{3} \) |
18T765 |
Trivial
(GRH)
|
| 18.10.2429085073021046176452968448.2 |
x18 - 21x16 + 120x14 - 99x12 - 261x10 + 459x8 - 171x6 - 270x4 + 270x2 - 27 |
\( 2^{24}\cdot 3^{21}\cdot 7^{12} \) |
18T765 |
Trivial
(GRH)
|
| 18.6.4361478416459465406297145344.1 |
x18 + 3x16 - 36x14 - 138x12 - 18x10 + 7857x8 - 37971x6 + 77409x4 - 12717x2 - 35019 |
\( 2^{18}\cdot 3^{27}\cdot 1297^{3} \) |
18T765 |
$[2]$
(GRH)
|
| 18.6.4361478416459465406297145344.2 |
x18 - 6x16 + 18x14 - 219x12 + 630x10 - 162x8 + 4203x6 + 6048x4 - 38961x2 - 35019 |
\( 2^{18}\cdot 3^{27}\cdot 1297^{3} \) |
18T765 |
$[2]$
(GRH)
|
| 18.10.12178167588536804870357659257.1 |
x18 - 3x17 - 18x16 + 26x15 + 201x14 - 99x13 - 1109x12 + 534x11 + 2730x10 - 1878x9 - 2367x8 + 1770x7 - 283x6 + 873x5 + 1017x4 + 398x3 - 369x2 - 2133x + 197 |
\( 3^{24}\cdot 73^{3}\cdot 577^{4} \) |
18T765 |
Trivial
(GRH)
|
| 18.6.12178167588536804870357659257.1 |
x18 + 9x16 - 31x15 - 36x14 - 42x13 - 334x12 + 207x11 + 729x10 - 115x9 + 1770x8 + 7110x7 + 12504x6 + 15840x5 + 15120x4 + 7515x3 - 3213x2 - 5670x - 1917 |
\( 3^{24}\cdot 73^{3}\cdot 577^{4} \) |
18T765 |
Trivial
(GRH)
|
| 18.10.12178167588536804870357659257.2 |
x18 - 36x16 - 35x15 + 453x14 + 870x13 - 1824x12 - 6645x11 - 3936x10 + 12397x9 + 32964x8 + 31575x7 - 6894x6 - 58506x5 - 83958x4 - 69436x3 - 37893x2 - 14151x - 2809 |
\( 3^{24}\cdot 73^{3}\cdot 577^{4} \) |
18T765 |
Trivial
(GRH)
|
| 18.6.12178167588536804870357659257.2 |
x18 - 3x17 + 9x16 - 23x15 + 6x14 + 3x13 + 19x12 - 120x11 + 702x10 - 1128x9 + 126x8 - 120x7 - 3302x6 + 2775x5 + 2427x4 + 8128x3 - 153x2 - 4251x + 53 |
\( 3^{24}\cdot 73^{3}\cdot 577^{4} \) |
18T765 |
Trivial
(GRH)
|
| 18.12.12488057521927227046014543503.1 |
x18 - 4x17 - 22x16 + 57x15 + 262x14 - 112x13 - 1816x12 - 1828x11 + 5221x10 + 12015x9 + 132x8 - 22929x7 - 22265x6 + 4506x5 + 19952x4 + 11105x3 - 16x2 - 1781x - 419 |
\( -\,7^{15}\cdot 138041^{3} \) |
18T765 |
$[2]$
(GRH)
|
| 18.4.46062650273584283049774809088.1 |
x18 - 12x14 - 8x12 + 27x10 + 36x8 + 39x6 + 54x4 + 36x2 + 8 |
\( -\,2^{33}\cdot 3^{18}\cdot 7^{12} \) |
18T765 |
Trivial
(GRH)
|
| 18.2.536495523810946581168977084416.1 |
x18 + 22x16 + 221x14 + 1586x12 + 6304x10 - 4671x8 - 107228x6 - 257753x4 - 211516x2 - 52879 |
\( 2^{18}\cdot 7^{12}\cdot 52879^{3} \) |
18T765 |
Trivial
(GRH)
|
| 18.2.536495523810946581168977084416.2 |
x18 + 21x16 + 80x14 - 474x12 - 529x10 + 14193x8 + 3752x6 - 152626x4 - 178648x2 - 52879 |
\( 2^{18}\cdot 7^{12}\cdot 52879^{3} \) |
18T765 |
Trivial
(GRH)
|
| 18.4.3036795991579620615531492351603.1 |
x18 - 6x17 + 21x16 + 5x15 - 480x14 + 2544x13 - 9267x12 + 23430x11 - 46083x10 + 78591x9 - 99219x8 + 134766x7 - 115747x6 + 149169x5 - 76062x4 + 93928x3 + 7833x2 + 23652x + 37981 |
\( -\,3^{27}\cdot 73^{5}\cdot 577^{3} \) |
18T765 |
$[2, 2]$
(GRH)
|
| 18.12.3755468666676626068182839590912.1 |
x18 - 33x16 + 347x14 - 405x12 - 16532x10 + 113467x8 - 261568x6 + 129787x4 + 14882x2 + 370153 |
\( -\,2^{18}\cdot 7^{13}\cdot 52879^{3} \) |
18T765 |
$[2]$
(GRH)
|
| 18.12.3755468666676626068182839590912.2 |
x18 - 9x16 - 245x14 + 821x12 + 5152x10 + 25976x8 - 367613x6 + 1073758x4 - 1161545x2 + 370153 |
\( -\,2^{18}\cdot 7^{13}\cdot 52879^{3} \) |
18T765 |
$[2]$
(GRH)
|
| 18.8.3755468666676626068182839590912.2 |
x18 + 13x16 - 77x14 - 1216x12 - 2009x10 + 4023x8 + 81794x6 + 244265x4 - 750498x2 + 370153 |
\( -\,2^{18}\cdot 7^{13}\cdot 52879^{3} \) |
18T765 |
$[2]$
(GRH)
|
| 18.8.3755468666676626068182839590912.3 |
x18 + 13x16 - 122x14 - 2250x12 + 3004x10 + 100271x8 - 58239x6 - 825153x4 - 515739x2 + 370153 |
\( -\,2^{18}\cdot 7^{13}\cdot 52879^{3} \) |
18T765 |
$[2]$
(GRH)
|
| 18.4.5532813802997213476490534191104.1 |
x18 + 39x16 + 540x14 + 3088x12 + 3900x10 - 34050x8 - 156460x6 - 238368x4 - 93474x2 + 42121 |
\( -\,2^{18}\cdot 3^{24}\cdot 73^{3}\cdot 577^{3} \) |
18T765 |
$[2]$
(GRH)
|
| 18.14.8210596569826381664214775617297.1 |
x18 - 54x16 - 50x15 + 993x14 + 1995x13 - 6386x12 - 26028x11 - 11313x10 + 116072x9 + 271530x8 + 31032x7 - 795618x6 - 1245204x5 - 20277x4 + 1846080x3 + 1754109x2 + 374706x - 83079 |
\( 3^{24}\cdot 73^{6}\cdot 577^{3} \) |
18T765 |
Trivial
(GRH)
|
| 18.0.17656106622712745392937787195392.1 |
x18 + 61x16 + 1420x14 + 16587x12 + 107327x10 + 402576x8 + 882073x6 + 1091004x4 + 689157x2 + 169457 |
\( -\,2^{18}\cdot 7^{12}\cdot 169457^{3} \) |
18T765 |
$[2, 2176]$
(GRH)
|
| 18.14.64897455079312633154135966180553.1 |
x18 - 60x16 - x15 + 1101x14 - 306x13 - 5787x12 + 9960x11 - 12687x10 - 60954x9 + 175299x8 + 21000x7 - 310223x6 + 593118x5 - 323886x4 - 1283994x3 + 605688x2 + 939309x + 116299 |
\( 3^{24}\cdot 73^{5}\cdot 577^{4} \) |
18T765 |
Trivial
(GRH)
|
| 18.0.3192433564329392175935038228267008.1 |
x18 + 93x16 + 3519x14 + 70211x12 + 806046x10 + 5497452x8 + 22162597x6 + 50450268x4 + 57830979x2 + 24303817 |
\( -\,2^{18}\cdot 3^{24}\cdot 73^{3}\cdot 577^{4} \) |
18T765 |
$[2, 2, 10388]$
(GRH)
|
| 18.18.3192433564329392175935038228267008.1 |
x18 - 108x16 + 4500x14 - 95631x12 + 1145571x10 - 7993866x8 + 32196176x6 - 71080155x4 + 74806896x2 - 24303817 |
\( 2^{18}\cdot 3^{24}\cdot 73^{3}\cdot 577^{4} \) |
18T765 |
Trivial
(GRH)
|
| 18.18.3192433564329392175935038228267008.2 |
x18 - 102x16 + 4227x14 - 92721x12 + 1177542x10 - 8848419x8 + 38270561x6 - 87359298x4 + 87032949x2 - 24303817 |
\( 2^{18}\cdot 3^{24}\cdot 73^{3}\cdot 577^{4} \) |
18T765 |
Trivial
(GRH)
|