| 18.4.338190585776316833283.1 |
x18 - x17 + 2x16 - 3x15 + 5x14 - 13x13 + 14x12 - 2x11 + 20x10 - 16x9 - 10x8 + 6x7 - 3x6 - 6x5 - x4 + 8x3 + 3x2 - 2x - 1 |
\( -\,3^{9}\cdot 107^{8} \) |
$S_3\times S_4$ (as 18T69) |
Trivial
|
| 18.2.8633150681191238242304.1 |
x18 - 3x16 - 9x15 - x14 + 51x13 + 46x12 - 45x11 + 3x10 + 68x9 + 35x8 - 33x7 - 35x6 - 19x5 - 4x4 - 9x3 - 8x2 - 4x - 2 |
\( 2^{12}\cdot 11^{9}\cdot 19^{7} \) |
$S_3\times S_4$ (as 18T69) |
Trivial
|
| 18.4.46682318931339005816832.1 |
x18 - 3x17 + 6x16 - 12x15 + 27x14 - 39x13 + 21x12 + 39x11 - 135x10 + 299x9 - 531x8 + 651x7 - 438x6 + 291x4 - 267x3 + 114x2 - 24x + 2 |
\( -\,2^{12}\cdot 3^{24}\cdot 7^{9} \) |
$S_3\times S_4$ (as 18T69) |
Trivial
|
| 18.2.90022298341717743394937.1 |
x18 - 3x17 + x16 + x15 + 8x14 - 32x13 + 81x12 - 132x11 + 184x10 + 62x9 - 568x8 + 1219x7 - 1445x6 + 976x5 - 228x4 - 384x3 + 576x2 - 320x + 64 |
\( 23^{7}\cdot 31^{9} \) |
$S_3\times S_4$ (as 18T69) |
Trivial
|
| 18.0.719742746933040523296267.1 |
x18 - 11x16 - 6x15 + 46x14 + 57x13 - 69x12 - 168x11 - 3x10 + 127x9 + 177x8 + 19x7 - 118x6 - 113x5 + 233x4 - 78x3 + 14x2 - 54x + 27 |
\( -\,3^{7}\cdot 367^{8} \) |
$S_3\times S_4$ (as 18T69) |
Trivial
|
| 18.0.2836058877396286768262403.1 |
x18 - 4x17 + 13x16 - 21x15 + 25x14 + 9x13 - 67x12 + 149x11 - 123x10 - 38x9 + 295x8 - 317x7 + 23x6 + 306x5 - 203x4 - 78x3 - 33x2 + 18x + 117 |
\( -\,3^{9}\cdot 331^{8} \) |
$S_3\times S_4$ (as 18T69) |
$[4]$
|
| 18.0.6477684722397364709666403.1 |
x18 + 3x16 - 6x14 + 14x12 + 153x10 + 69x8 - 108x6 + 1197x4 + 1539x2 + 27 |
\( -\,3^{9}\cdot 367^{8} \) |
$S_3\times S_4$ (as 18T69) |
Trivial
|
| 18.0.88654632917746799944138752.1 |
x18 + 9x16 + 11x14 - 44x12 - 63x10 + 60x8 + 117x6 + 144x4 + 81x2 + 27 |
\( -\,2^{18}\cdot 3^{9}\cdot 107^{8} \) |
$S_3\times S_4$ (as 18T69) |
$[2]$
|
| 18.6.18147624991591898888000000000.1 |
x18 - 7x17 + 19x16 + x15 - 161x14 + 495x13 - 708x12 + 205x11 + 1550x10 - 4811x9 + 9385x8 - 13607x7 + 14814x6 - 12128x5 + 7334x4 - 3101x3 + 754x2 - 35x - 25 |
\( 2^{12}\cdot 5^{9}\cdot 197^{8} \) |
$S_3\times S_4$ (as 18T69) |
$[2]$
|
| 18.6.18147624991591898888000000000.2 |
x18 - 2x17 - 24x15 - 26x14 + 25x13 + 253x12 - 410x11 + 288x10 - 74x9 - 375x8 + 350x7 + 701x6 - 418x5 - 174x4 + 35x3 - 225x2 + 25x + 25 |
\( 2^{12}\cdot 5^{9}\cdot 197^{8} \) |
$S_3\times S_4$ (as 18T69) |
$[2]$
(GRH)
|
| 18.18.74332671965560417845248000000000.1 |
x18 - 6x17 - 36x16 + 184x15 + 563x14 - 2242x13 - 4937x12 + 13890x11 + 26125x10 - 46306x9 - 83724x8 + 79674x7 + 155884x6 - 55970x5 - 153763x4 - 8324x3 + 62271x2 + 20938x - 461 |
\( 2^{24}\cdot 5^{9}\cdot 197^{8} \) |
$S_3\times S_4$ (as 18T69) |
$[2]$
(GRH)
|
| 18.18.336628750145214343319449527123968.1 |
x18 - 8x17 - 21x16 + 286x15 - 17x14 - 3984x13 + 3509x12 + 27660x11 - 33404x10 - 102936x9 + 133768x8 + 207028x7 - 257392x6 - 202992x5 + 229580x4 + 56496x3 - 83608x2 + 14040x + 1028 |
\( 2^{18}\cdot 17^{9}\cdot 101^{8} \) |
$S_3\times S_4$ (as 18T69) |
$[2]$
(GRH)
|