Learn more about

Further refine search

Results (displaying matches 1-50 of 684) Next

Label Polynomial Discriminant Galois group Class group
18.0.35483630873210630144.1 x18 - 2x17 + 4x16 - 6x15 + 16x14 - 34x13 + 71x12 - 112x11 + 148x10 - 156x9 + 148x8 - 112x7 + 71x6 - 34x5 + 16x4 - 6x3 + 4x2 - 2x + 1 \( -\,2^{12}\cdot 59^{9} \) $D_9$ (as 18T5) Trivial
18.0.439734536489990234375.1 x18 - 3x17 + 12x16 - 18x15 + 50x14 - 32x13 + 68x12 + 39x11 + 34x10 + 127x9 - 88x8 + 148x7 - x6 - 74x5 + 96x4 - 84x3 + 41x2 - 10x + 1 \( -\,5^{12}\cdot 23^{9} \) $D_9$ (as 18T5) Trivial
18.0.489415464119070561799.1 x18 - 9x17 + 46x16 - 164x15 + 444x14 - 952x13 + 1655x12 - 2364x11 + 2804x10 - 2789x9 + 2362x8 - 1740x7 + 1154x6 - 709x5 + 393x4 - 179x3 + 62x2 - 15x + 9 \( -\,199^{9} \) $D_9$ (as 18T5) Trivial
18.0.765707285575845490688.1 x18 - 3x17 + 10x16 - 25x15 + 47x14 - 74x13 + 101x12 - 135x11 + 177x10 - 182x9 + 177x8 - 135x7 + 101x6 - 74x5 + 47x4 - 25x3 + 10x2 - 3x + 1 \( -\,2^{12}\cdot 83^{9} \) $D_9$ (as 18T5) Trivial
18.0.7530328934072952860672.1 x18 - 9x17 + 33x16 - 60x15 + 50x14 - 14x13 + 62x12 - 268x11 + 523x10 - 635x9 + 523x8 - 268x7 + 62x6 - 14x5 + 50x4 - 60x3 + 33x2 - 9x + 1 \( -\,2^{12}\cdot 107^{9} \) $D_9$ (as 18T5) Trivial
18.0.53137762492763568359375.1 x18 - 4x16 - 6x14 + 64x12 - 145x10 + 279x8 - 446x6 + 206x4 + 341x2 + 335 \( -\,5^{9}\cdot 67^{9} \) $D_9$ (as 18T5) $[2]$
18.0.79340174304968833675264.1 x18 - 6x17 + 12x16 + 12x15 - 48x14 + 6x13 + 199x12 - 324x11 - 24x10 + 348x9 - 24x8 - 324x7 + 199x6 + 6x5 - 48x4 + 12x3 + 12x2 - 6x + 1 \( -\,2^{12}\cdot 139^{9} \) $D_9$ (as 18T5) Trivial
18.0.120779875685608537745647.1 x18 + 4x14 - 40x12 + 20x10 + 287x8 - 1036x6 + 1882x4 - 1404x2 + 367 \( -\,367^{9} \) $D_9$ (as 18T5) Trivial
18.0.151749870875069854858407.1 x18 - 3x17 - 3x16 + 20x15 + 9x14 - 60x13 - 63x12 + 60x11 + 345x10 - 40x9 - 237x8 - 489x7 + 136x6 + 129x5 + 63x4 + 102x3 + 168x2 + 87 \( -\,3^{21}\cdot 29^{9} \) $D_9$ (as 18T5) $[2]$
18.0.365958403811771477871871.2 x18 - 5x17 + 22x16 - 84x15 + 232x14 - 559x13 + 1199x12 - 2031x11 + 2823x10 - 3592x9 + 3830x8 - 2694x7 + 656x6 + 1087x5 - 1604x4 + 1065x3 - 742x2 - 54x + 729 \( -\,7^{12}\cdot 31^{9} \) $D_9$ (as 18T5) $[3]$
18.0.398039531776795387285379.1 x18 - 2x17 - 5x16 + 28x15 + 12x14 - 114x13 + 60x12 + 396x11 + 4x10 - 350x9 + 384x8 + 450x7 - 781x6 - 522x5 + 881x4 + 402x3 - 652x2 - 192x + 256 \( -\,419^{9} \) $D_9$ (as 18T5) Trivial (GRH)
18.0.508698711308514601331703.3 x18 - 18x14 - 57x12 + 177x10 + 1134x8 + 506x6 - 1977x4 + 234x2 + 575 \( -\,3^{24}\cdot 23^{9} \) $D_9$ (as 18T5) $[3]$
18.0.879460753693354224609375.1 x18 - 9x16 - 3x15 + 27x14 - 9x13 - 6x12 + 81x11 + 243x10 - 602x9 - 486x8 + 792x7 + 399x6 - 594x5 + 576x4 - 210x3 + 25 \( -\,3^{37}\cdot 5^{9} \) $D_9$ (as 18T5) $[2]$
18.0.1658568561963902101824011.1 x18 - 4x17 + 4x16 + 14x15 - 47x14 + 2x13 + 153x12 - 156x11 - 191x10 + 738x9 - 739x8 - 228x7 + 1880x6 - 3298x5 + 3757x4 - 3378x3 + 2372x2 - 1120x + 256 \( -\,491^{9} \) $D_9$ (as 18T5) $[2, 2]$
18.0.2732160577820469872382279.1 x18 - 4x17 + 2x16 + 27x15 - 41x14 - 47x13 + 244x12 - 269x11 + 208x10 - 186x9 + 578x8 - 1066x7 + 1660x6 - 1326x5 + 1065x4 - 423x3 + 360x2 - 135x + 81 \( -\,3^{9}\cdot 173^{9} \) $D_9$ (as 18T5) $[2]$
18.0.3135418647416996838649487.1 x18 + 8x16 - 20x15 + 44x14 - 140x13 + 201x12 - 451x11 + 736x10 - 464x9 + 519x8 - 1219x7 + 1657x6 - 303x5 - 925x4 + 30x3 + 246x2 + 80x + 25 \( -\,17^{9}\cdot 31^{9} \) $D_9$ (as 18T5) $[2]$
18.0.3395486793483559622619136.1 x18 - 9x17 + 45x16 - 156x15 + 372x14 - 588x13 + 444x12 + 534x11 - 1913x10 + 1953x9 + 513x8 - 4074x7 + 3354x6 + 2694x5 - 3036x4 - 2226x3 + 1579x2 + 513x + 81 \( -\,2^{12}\cdot 211^{9} \) $D_9$ (as 18T5) Trivial
18.0.5652788623542031943002823.1 x18 - x17 - 6x16 - 13x15 + 61x14 + 245x13 + 372x12 + 314x11 + 906x10 + 2799x9 + 4131x8 + 2808x7 + 2387x6 + 3862x5 + 3861x4 - 525x3 + 583x2 - 989x + 529 \( -\,11^{12}\cdot 23^{9} \) $D_9$ (as 18T5) Trivial (GRH)
18.0.5682972489147397363698323.1 x18 - 4x17 + 10x16 - 28x15 + 65x14 - 124x13 + 194x12 - 336x11 + 644x10 - 860x9 + 1190x8 - 2036x7 + 2873x6 - 2556x5 + 3530x4 - 4448x3 + 2409x2 - 1896x + 2396 \( -\,563^{9} \) $D_9$ (as 18T5) $[2, 2]$
18.0.7467330231571086237938751.2 x18 + 18x16 + 135x14 + 570x12 + 1575x10 + 3078x8 + 4566x6 + 6012x4 + 5373x2 + 5239 \( -\,3^{24}\cdot 31^{9} \) $D_9$ (as 18T5) Trivial (GRH)
18.0.19383245667680019896796723.1 x18 - 18x12 + 81x6 + 192 \( -\,3^{53} \) $D_9$ (as 18T5) Trivial
18.0.30678065370140273522687719.1 x18 - 2x16 + 57x14 - 240x12 + 1054x10 - 2522x8 + 2724x6 + 915x4 - 2225x2 + 679 \( -\,7^{9}\cdot 97^{9} \) $D_9$ (as 18T5) $[2]$
18.0.41963408025348177483649703.2 x18 - 5x17 + 24x16 - 62x15 + 205x14 - 252x13 + 776x12 - 244x11 + 2550x10 + 2973x9 + 7549x8 + 15264x7 + 15289x6 + 27725x5 + 28737x4 + 13096x3 + 37718x2 - 5250x + 15625 \( -\,13^{12}\cdot 23^{9} \) $D_9$ (as 18T5) $[3]$ (GRH)
18.0.47691157991223085851455488.1 x18 - x17 + 5x16 + 10x15 + 30x14 - 32x13 + 262x12 + 20x11 + 187x10 + 427x9 + 1687x8 - 196x7 + 882x6 + 3764x5 + 5354x4 - 6926x3 - 5771x2 + 171x + 3249 \( -\,2^{12}\cdot 283^{9} \) $D_9$ (as 18T5) $[2, 2]$
18.0.60436082803655481715851264.1 x18 + 18x16 - 24x15 + 162x14 - 288x13 + 1068x12 - 1872x11 + 4473x10 - 7616x9 + 13050x8 - 18360x7 + 23988x6 - 26784x5 + 24408x4 - 16992x3 + 8352x2 - 2304x + 256 \( -\,2^{27}\cdot 3^{37} \) $D_9$ (as 18T5) $[2]$ (GRH)
18.0.69712928281989630615234375.1 x18 + 7x16 - 56x14 + 358x12 - 1094x10 + 1993x8 - 1574x6 + 817x4 - 506x2 + 783 \( -\,3^{9}\cdot 5^{12}\cdot 29^{9} \) $D_9$ (as 18T5) $[2]$ (GRH)
18.0.82978860458831265178139791.1 x18 - 3x17 + 18x16 - 48x15 + 83x14 - 203x13 + 90x12 + 47x11 + 131x10 + 918x9 + 3164x8 + 2377x7 - 796x6 + 1065x5 + 9952x4 - 8374x3 - 16172x2 + 7750x + 19127 \( -\,11^{12}\cdot 31^{9} \) $D_9$ (as 18T5) Trivial (GRH)
18.0.173220192505318905457564663.1 x18 - 6x17 + 9x16 + 13x15 - 30x14 - 35x13 + 86x12 - 421x11 + 2163x10 - 4960x9 + 8548x8 - 16577x7 + 28762x6 - 35630x5 + 32042x4 - 21435x3 + 10881x2 - 4995x + 2025 \( -\,823^{9} \) $D_9$ (as 18T5) Trivial
18.0.195349314665489411651055616.1 x18 - 5x17 + 24x16 - 103x15 + 325x14 - 916x13 + 2177x12 - 4023x11 + 6609x10 - 11370x9 + 22487x8 - 47101x7 + 79963x6 - 92740x5 + 67479x4 - 27701x3 + 5710x2 - 1113x + 441 \( -\,2^{12}\cdot 331^{9} \) $D_9$ (as 18T5) $[2, 2]$ (GRH)
18.0.258151783382020583032356864.8 x18 + 18x16 + 135x14 + 564x12 + 1503x10 + 2754x8 + 3465x6 + 2808x4 + 1296x2 + 12544 \( -\,2^{18}\cdot 3^{44} \) $D_9$ (as 18T5) Trivial (GRH)
18.0.448842581157264283935546875.1 x18 - x17 + 12x16 - 53x15 + 113x14 - 460x13 + 1093x12 - 2083x11 + 5509x10 - 8812x9 + 14193x8 - 28895x7 + 29724x6 - 50207x5 + 69537x4 - 45474x3 + 104656x2 - 28952x + 81232 \( -\,5^{12}\cdot 107^{9} \) $D_9$ (as 18T5) Trivial (GRH)
18.0.660865130598477469667405824.1 x18 - 2x17 + 16x16 - 34x15 + 114x14 - 238x13 + 595x12 - 1236x11 + 2184x10 - 4548x9 + 5588x8 - 6544x7 + 18315x6 - 19882x5 - 5428x4 + 18166x3 - 5470x2 - 12606x + 14373 \( -\,2^{12}\cdot 379^{9} \) $D_9$ (as 18T5) Trivial (GRH)
18.0.686068476073813329411695039.1 x18 - 16x16 + 118x14 - 520x12 + 1223x10 + 263x8 - 7570x6 - 350x4 + 37877x2 + 46991 \( -\,7^{9}\cdot 137^{9} \) $D_9$ (as 18T5) $[4]$
18.0.857001654756864267001092503.1 x18 - 2x16 + 47x14 - 98x12 + 427x10 + 2890x8 + 4998x6 + 4004x4 + 1997x2 + 983 \( -\,983^{9} \) $D_9$ (as 18T5) $[3]$
18.0.995320331802267761719062711.1 x18 - 9x17 + 30x16 - 36x15 - 66x14 + 378x13 - 795x12 + 870x11 + 1293x10 - 8434x9 + 20088x8 - 30084x7 + 32202x6 - 25995x5 + 6084x4 + 12516x3 + 42x2 - 8085x + 5929 \( -\,3^{21}\cdot 7^{9}\cdot 11^{9} \) $D_9$ (as 18T5) $[2, 2]$
18.0.1049391593213911389381400343.1 x18 - 3x17 + 3x16 - 34x15 - 9x14 + 80x13 + 231x12 + 560x11 + 2030x10 - 3725x9 + 25845x8 - 63455x7 + 178616x6 - 258728x5 + 511018x4 - 557964x3 + 306556x2 + 149960x + 13961 \( -\,17^{12}\cdot 23^{9} \) $D_9$ (as 18T5) Trivial (GRH)
18.0.1370680848838155021841575936.1 x18 - 9x17 + 43x16 - 140x15 + 301x14 - 371x13 + 94x12 + 541x11 - 35x10 - 4236x9 + 12775x8 - 21345x7 + 30849x6 - 39744x5 + 35316x4 - 18792x3 - 1728x2 + 6480x + 1296 \( -\,2^{12}\cdot 3^{9}\cdot 137^{9} \) $D_9$ (as 18T5) $[2]$ (GRH)
18.0.1619094273320941745099609375.1 x18 - 2x17 + 13x16 + x15 - 9x14 - 38x13 + 110x12 + 158x11 + 440x10 + 2672x9 + 7706x8 + 9636x7 + 5218x6 - 2402x5 + 3841x4 + 4210x3 - 905x2 + 125x + 625 \( -\,5^{9}\cdot 211^{9} \) $D_9$ (as 18T5) $[4]$ (GRH)
18.0.1963654613102253673602960967.1 x18 - 3x16 - 81x14 + 471x12 + 1048x10 + 3810x8 - 2286x6 + 1383x4 - 1301x2 + 567 \( -\,7^{9}\cdot 17^{16} \) $D_9$ (as 18T5) Trivial (GRH)
18.0.2118682584788822909365118527.1 x18 - 6x16 - 31x14 + 292x12 - 364x10 - 1609x8 + 1486x6 + 8021x4 + 4506x2 + 1087 \( -\,1087^{9} \) $D_9$ (as 18T5) Trivial (GRH)
18.0.2422795065922582753693359375.1 x18 - 9x17 + 54x16 - 228x15 + 744x14 - 1932x13 + 4228x12 - 7974x11 + 15474x10 - 30444x9 + 62337x8 - 111108x7 + 159331x6 - 174375x5 + 178821x4 - 156870x3 + 111225x2 - 49275x + 14475 \( -\,3^{21}\cdot 5^{9}\cdot 17^{9} \) $D_9$ (as 18T5) $[2, 2]$ (GRH)
18.0.2446685893599555554651329659.1 x18 + 12x16 + 18x14 + 119x12 + 345x10 + 1458x8 + 536x6 + 4587x4 - 3924x2 + 944 \( -\,3^{24}\cdot 59^{9} \) $D_9$ (as 18T5) $[3]$ (GRH)
18.0.2587493762586279810794282003.2 x18 - 9x17 + 49x16 - 188x15 + 557x14 - 1323x13 + 2498x12 - 3691x11 + 5274x10 - 8957x9 + 16214x8 - 24727x7 + 31261x6 - 32340x5 + 13457x4 + 9905x3 - 3111x2 - 4870x + 19900 \( -\,7^{12}\cdot 83^{9} \) $D_9$ (as 18T5) $[3]$ (GRH)
18.18.2980200459393400813138329769.1 x18 - 8x17 - 6x16 + 178x15 - 196x14 - 1395x13 + 2473x12 + 4629x11 - 10538x10 - 5875x9 + 18736x8 + 646x7 - 12300x6 + 1871x5 + 1876x4 - 250x3 - 78x2 + 6x + 1 \( 1129^{9} \) $D_9$ (as 18T5) Trivial (GRH)
18.0.3125811277826530216380859375.1 x18 - 24x16 + 194x14 - 416x12 - 1645x10 + 6479x8 + 2374x6 + 1106x4 - 3579x2 + 1135 \( -\,5^{9}\cdot 227^{9} \) $D_9$ (as 18T5) $[2]$ (GRH)
18.0.3161905054840233264308432896.1 x18 - 3x17 + 9x16 - 36x15 + 147x14 - 515x13 + 1616x12 - 5017x11 + 14283x10 - 34858x9 + 73403x8 - 123691x7 + 166209x6 - 187176x5 + 165508x4 - 106788x3 + 65288x2 + 9020x + 1804 \( -\,2^{12}\cdot 11^{9}\cdot 41^{9} \) $D_9$ (as 18T5) $[2]$ (GRH)
18.0.3923141589765123982587998208.1 x18 - 6x17 + 23x16 - 66x15 + 198x14 - 456x13 + 239x12 + 918x11 - 1934x10 - 912x9 + 1671x8 + 7038x7 + 15885x6 + 4374x5 - 3132x4 - 1296x3 + 648x2 + 1944x + 972 \( -\,2^{12}\cdot 3^{9}\cdot 17^{16} \) $D_9$ (as 18T5) Trivial (GRH)
18.0.3952298647444414435530183927.2 x18 - 9x17 + 42x16 - 132x15 + 321x14 - 651x13 + 736x12 + 693x11 - 4680x10 + 9969x9 - 3273x8 - 27555x7 + 64117x6 - 73656x5 - 33918x4 + 148365x3 - 131238x2 + 50868x + 391959 \( -\,3^{9}\cdot 7^{12}\cdot 29^{9} \) $D_9$ (as 18T5) $[6]$ (GRH)
18.0.4172040398734878910471995392.1 x18 - 2x17 + 3x16 - 4x15 + 23x14 - 122x13 + 265x12 - 328x11 + 344x10 - 1400x9 + 8884x8 - 17408x7 + 12688x6 - 3968x5 + 9216x4 - 16384x3 + 9216x2 + 8192x + 16384 \( -\,2^{18}\cdot 293^{9} \) $D_9$ (as 18T5) $[2]$ (GRH)
18.0.4677959640662633651334007427.1 x18 - 2x17 + 15x16 - 40x15 + 112x14 - 334x13 + 696x12 - 1860x11 + 4216x10 - 9634x9 + 23952x8 - 51770x7 + 103815x6 - 178442x5 + 240121x4 - 240390x3 + 158800x2 - 59000x + 10000 \( -\,1187^{9} \) $D_9$ (as 18T5) Trivial (GRH)
Next

Download all search results for