| 18.4.2315693668589360644096.1 |
x18 + 2x16 - 2x15 - 3x14 + 6x13 - 11x12 + 24x11 - 39x10 + 68x9 - 102x8 + 120x7 - 134x6 + 114x5 - 45x4 - 8x3 + 15x2 - 6x + 1 |
\( -\,2^{18}\cdot 37^{6}\cdot 151^{3} \) |
18T486 |
Trivial
|
| 18.4.3295805625871197274112.1 |
x18 - 2x17 - x16 + 12x14 - 12x13 - 10x12 + 4x11 + 42x10 - 34x9 - 20x8 + 16x7 + 18x6 - 24x5 + 8x4 + 6x3 - 9x2 + 2x + 1 |
\( -\,2^{20}\cdot 37^{6}\cdot 107^{3} \) |
18T486 |
Trivial
|
| 18.2.43369397037232870916096.1 |
x18 - 4x17 + 11x16 - 30x15 + 69x14 - 128x13 + 228x12 - 398x11 + 582x10 - 676x9 + 735x8 - 860x7 + 899x6 - 678x5 + 355x4 - 150x3 + 60x2 - 16x + 1 |
\( 2^{18}\cdot 37^{6}\cdot 401^{3} \) |
18T486 |
Trivial
|
| 18.2.335405228452106761142272.1 |
x18 - 4x17 + 3x16 - 8x15 + 45x14 - 94x13 + 62x12 + 68x11 - 156x10 + 70x9 + 101x8 - 164x7 + 123x6 - 106x5 + 115x4 - 72x3 + 18x2 - 2x + 1 |
\( 2^{18}\cdot 13^{3}\cdot 37^{6}\cdot 61^{3} \) |
18T486 |
$[2]$
|
| 18.0.514687157793406972592128.1 |
x18 + 3x16 + 6x14 + 22x12 + 82x10 + 285x8 + 524x6 + 381x4 + 202x2 + 1303 |
\( -\,2^{18}\cdot 31^{6}\cdot 1303^{3} \) |
18T486 |
$[4]$
|
| 18.0.719728602127529789882368.1 |
x18 + 4x16 + 14x14 + 44x12 + 211x10 + 353x8 + 700x6 + 2652x4 + 1685x2 + 2647 |
\( -\,2^{18}\cdot 23^{6}\cdot 2647^{3} \) |
18T486 |
$[2]$
|
| 18.6.1673586788240844494212561.1 |
x18 - 2x17 - 17x16 + 8x15 + 142x14 + 133x13 - 476x12 - 1285x11 - 286x10 + 3773x9 + 4819x8 - 3473x7 - 9463x6 - 1813x5 + 6262x4 + 3766x3 - 527x2 - 792x - 121 |
\( 23^{6}\cdot 59^{5}\cdot 251^{3} \) |
18T486 |
Trivial
(GRH)
|
| 18.8.28192666322626401521369088.1 |
x18 - 6x17 + 7x16 + 38x15 - 138x14 + 88x13 + 313x12 - 680x11 + 373x10 + 394x9 - 515x8 - 186x7 + 447x6 + 54x5 - 248x4 - 42x3 + 72x2 + 28x + 1 |
\( -\,2^{27}\cdot 3^{6}\cdot 257^{6} \) |
18T486 |
Trivial
|
| 18.0.30582621154749211119190016.1 |
x18 + 4x16 - 8x15 + 5x14 - 74x13 + 23x12 - 184x11 + 395x10 - 206x9 + 1318x8 - 518x7 + 1856x6 - 1632x5 + 1643x4 - 1516x3 + 1185x2 - 634x + 191 |
\( -\,2^{18}\cdot 101^{6}\cdot 479^{3} \) |
18T486 |
$[4]$
|
| 18.6.59213367012524597901566561.1 |
x18 - 3x17 + 2x16 - 4x15 - 47x14 - 44x13 + 138x12 + 686x11 + 262x10 + 593x9 - 169x8 - 640x7 + 2443x6 + 2473x5 - 2549x4 - 12680x3 + 7834x2 - 7500x + 5723 |
\( 23^{6}\cdot 43^{3}\cdot 347^{5} \) |
18T486 |
Trivial
(GRH)
|
| 18.10.81886042102565127232000000.1 |
x18 - 7x17 + 5x16 + 58x15 - 110x14 - 93x13 + 384x12 - 375x11 - 357x10 + 1271x9 + 424x8 - 56x7 - 744x6 - 1719x5 - 236x4 + 825x3 + 446x2 - 13 |
\( 2^{12}\cdot 5^{6}\cdot 13^{3}\cdot 37^{6}\cdot 61^{3} \) |
18T486 |
Trivial
(GRH)
|
| 18.0.139599627342812498772361216.1 |
x18 - 2x17 + 12x16 - 14x15 + 78x14 - 52x13 + 278x12 - 66x11 + 548x10 + 200x9 + 1278x8 + 2462x7 + 2100x6 + 3778x5 + 4606x4 + 1046x3 + 8996x2 + 676x + 4394 |
\( -\,2^{20}\cdot 37^{6}\cdot 139^{5} \) |
18T486 |
$[2]$
|
| 18.0.139599627342812498772361216.2 |
x18 - 4x17 + 15x16 - 30x15 + 78x14 - 210x13 + 682x12 - 1868x11 + 4422x10 - 8408x9 + 12840x8 - 13976x7 + 10342x6 - 3308x5 + 5786x4 - 10468x3 + 14361x2 - 224x + 1103 |
\( -\,2^{20}\cdot 37^{6}\cdot 139^{5} \) |
18T486 |
$[2]$
|
| 18.6.155803399243213903936618496.1 |
x18 - 2x16 + 6x14 - 41x12 - 29x10 + 290x8 - 219x6 - 206x4 + 305x2 - 101 |
\( 2^{20}\cdot 101^{3}\cdot 229^{6} \) |
18T486 |
$[2]$
(GRH)
|
| 18.10.177641050264505839272329216.1 |
x18 - 14x16 + 71x14 - 205x12 + 615x10 - 2024x8 + 4528x6 - 5615x4 + 3183x2 - 401 |
\( 2^{30}\cdot 37^{6}\cdot 401^{3} \) |
18T486 |
Trivial
(GRH)
|
| 18.0.200481182738676633040846848.1 |
x18 + 12x16 + 69x14 + 256x12 + 634x10 + 980x8 + 873x6 + 418x4 + 96x2 + 8 |
\( -\,2^{33}\cdot 3^{4}\cdot 257^{6} \) |
18T486 |
$[2, 2]$
|
| 18.8.200481182738676633040846848.1 |
x18 - 16x16 + 91x14 - 190x12 - 65x10 + 628x8 - 323x6 - 142x4 + 72x2 + 8 |
\( -\,2^{33}\cdot 3^{4}\cdot 257^{6} \) |
18T486 |
Trivial
|
| 18.6.585210034841778067134742528.1 |
x18 + 8x16 - 5x14 - 247x12 - 765x10 + 664x8 + 6022x6 + 5504x4 - 2249x2 - 157 |
\( 2^{20}\cdot 157^{3}\cdot 229^{6} \) |
18T486 |
$[2]$
(GRH)
|
| 18.12.1804330644648089697367621632.1 |
x18 - 4x16 - 29x14 + 126x12 + 79x10 - 536x8 - 603x6 + 2518x4 - 1560x2 + 72 |
\( -\,2^{33}\cdot 3^{6}\cdot 257^{6} \) |
18T486 |
Trivial
(GRH)
|
| 18.6.2945640892745755719979237376.1 |
x18 - 6x17 + 13x16 - 28x15 + 79x14 - 266x13 + 530x12 - 584x11 + 406x10 - 82x9 + 491x8 - 142x7 - 253x6 - 810x5 - 659x4 + 126x3 - 74x2 - 2x + 1 |
\( 2^{18}\cdot 37^{6}\cdot 16361^{3} \) |
18T486 |
$[2]$
|
| 18.6.6907264426536010794205708288.1 |
x18 - 10x16 - 12x15 + 48x14 - 110x13 + 60x12 + 100x11 + 1142x10 - 1990x9 - 2136x8 + 5220x7 - 1690x6 - 4688x5 + 4120x4 + 6426x3 - 9234x2 + 3416x - 386 |
\( 2^{20}\cdot 37^{6}\cdot 13693^{3} \) |
18T486 |
$[2]$
|
| 18.12.5380263717332074346510281437184.1 |
x18 - 3x17 - 24x16 + 60x15 + 263x14 - 333x13 - 2144x12 - 329x11 + 13788x10 + 8395x9 - 52480x8 - 32157x7 + 85756x6 + 94307x5 - 30091x4 - 179278x3 + 13966x2 + 46767x + 6363 |
\( -\,2^{12}\cdot 7^{9}\cdot 101^{6}\cdot 313^{3} \) |
18T486 |
$[2]$
(GRH)
|
| 18.18.6105276260627973911312771683975168.1 |
x18 - 66x16 + 1805x14 - 26561x12 + 228224x10 - 1160291x8 + 3364823x6 - 5025445x4 + 2935806x2 - 43237 |
\( 2^{18}\cdot 257^{6}\cdot 43237^{3} \) |
18T486 |
$[2]$
(GRH)
|
| 18.18.78009456339906965738219631334916096.1 |
x18 - 48x16 + 950x14 - 10109x12 + 63279x10 - 239621x8 + 543059x6 - 697871x4 + 446364x2 - 101081 |
\( 2^{18}\cdot 257^{6}\cdot 101081^{3} \) |
18T486 |
$[2]$
(GRH)
|