| 18.0.10834375376002294480896.2 |
x18 + 5x16 + 15x14 + 30x12 + 44x10 + 51x8 + 43x6 + 25x4 + 8x2 + 1 |
\( -\,2^{30}\cdot 3^{6}\cdot 7^{12} \) |
18T367 |
Trivial
|
| 18.0.19408409961765342806016.2 |
x18 + 3x16 + 9x14 + 24x12 + 48x10 + 69x8 + 65x6 + 39x4 + 12x2 + 1 |
\( -\,2^{36}\cdot 3^{24} \) |
18T367 |
Trivial
|
| 18.6.37720649252098625605632.1 |
x18 - 7x17 + 12x16 + 34x15 - 177x14 + 263x13 + 48x12 - 799x11 + 1500x10 - 1591x9 + 920x8 + 99x7 - 736x6 + 597x5 - 53x4 - 190x3 + 68x2 + 13x - 1 |
\( 2^{12}\cdot 3^{6}\cdot 7^{12}\cdot 97^{3} \) |
18T367 |
Trivial
|
| 18.6.155267279694122742448128.2 |
x18 - 6x16 + 15x14 - 26x12 + 36x10 - 36x8 + 35x6 - 24x4 + 12x2 - 8 |
\( 2^{39}\cdot 3^{24} \) |
18T367 |
Trivial
|
| 18.4.1256584347701942722269184.1 |
x18 + 9x16 + 17x14 - 41x12 - 135x10 - 54x8 + 115x6 + 105x4 + 23x2 + 1 |
\( -\,2^{12}\cdot 7^{12}\cdot 53^{6} \) |
18T367 |
Trivial
|
| 18.8.1256584347701942722269184.1 |
x18 - 2x16 - 13x14 + 13x12 + 55x10 + 6x8 - 45x6 - 17x4 + 2x2 + 1 |
\( -\,2^{12}\cdot 7^{12}\cdot 53^{6} \) |
18T367 |
Trivial
(GRH)
|
| 18.4.80421398252924334225227776.3 |
x18 + 5x16 - 13x14 - 139x12 - 363x10 - 412x8 - 183x6 - x4 + 11x2 + 1 |
\( -\,2^{18}\cdot 7^{12}\cdot 53^{6} \) |
18T367 |
Trivial
|
| 18.12.80421398252924334225227776.5 |
x18 - 6x16 + 67x12 - 164x10 + 132x8 + 2x6 - 40x4 + 8x2 + 1 |
\( -\,2^{18}\cdot 7^{12}\cdot 53^{6} \) |
18T367 |
Trivial
(GRH)
|
| 18.12.80421398252924334225227776.6 |
x18 - 28x14 + 54x12 + 49x10 - 189x8 + 132x6 - 7x4 - 14x2 + 1 |
\( -\,2^{18}\cdot 7^{12}\cdot 53^{6} \) |
18T367 |
Trivial
(GRH)
|
| 18.12.80421398252924334225227776.7 |
x18 - 6x16 + 4x14 + 43x12 - 110x10 + 72x8 + 44x6 - 62x4 + 12x2 + 1 |
\( -\,2^{18}\cdot 7^{12}\cdot 53^{6} \) |
18T367 |
Trivial
(GRH)
|
| 18.8.80421398252924334225227776.7 |
x18 - 19x14 - 8x12 + 90x10 + 85x8 - 24x6 - 30x4 + x2 + 1 |
\( -\,2^{18}\cdot 7^{12}\cdot 53^{6} \) |
18T367 |
Trivial
(GRH)
|
| 18.12.80421398252924334225227776.8 |
x18 - 8x16 + 17x14 + 6x12 - 41x10 + 7x8 + 32x6 - 6x4 - 8x2 + 1 |
\( -\,2^{18}\cdot 7^{12}\cdot 53^{6} \) |
18T367 |
Trivial
(GRH)
|
| 18.8.80421398252924334225227776.8 |
x18 + 2x16 - 12x14 - 27x12 + 25x10 + 64x8 - 19x6 - 40x4 + 13x2 + 1 |
\( -\,2^{18}\cdot 7^{12}\cdot 53^{6} \) |
18T367 |
Trivial
(GRH)
|
| 18.8.80421398252924334225227776.9 |
x18 + 7x16 - 4x14 - 116x12 - 193x10 + 132x8 + 284x6 - 39x4 - 32x2 + 1 |
\( -\,2^{18}\cdot 7^{12}\cdot 53^{6} \) |
18T367 |
Trivial
(GRH)
|
| 18.14.279992823820843547402730217.2 |
x18 - 4x17 - 11x16 + 59x15 + x14 - 205x13 + 136x12 - 109x11 + 525x10 + 343x9 - 2435x8 + 2761x7 - 553x6 - 1101x5 + 436x4 + 179x3 - 53x2 - 12x + 1 |
\( 7^{12}\cdot 53^{6}\cdot 97^{3} \) |
18T367 |
Trivial
(GRH)
|
| 18.6.279992823820843547402730217.3 |
x18 - 3x17 - 3x16 + 6x15 + 29x14 - 26x13 - 164x12 + 212x11 + 257x10 + 212x9 - 1250x8 + 935x7 + 1084x6 - 1204x5 - 6x4 + 199x3 + 121x2 - 52x - 41 |
\( 7^{12}\cdot 53^{6}\cdot 97^{3} \) |
18T367 |
Trivial
(GRH)
|
| 18.6.279992823820843547402730217.4 |
x18 - 2x17 + 7x15 - 12x14 + 19x13 - 89x12 + 152x11 - 261x10 + 179x9 - 444x8 + 228x7 - 328x6 - 164x5 - 270x4 - 116x3 + 262x2 + 68x + 1 |
\( 7^{12}\cdot 53^{6}\cdot 97^{3} \) |
18T367 |
$[2]$
|
| 18.6.279992823820843547402730217.5 |
x18 - 3x17 + 5x16 - 19x15 + 21x14 - 15x13 + 120x12 - 80x11 - 99x10 - 35x9 - 457x8 + 1109x7 - 598x6 + 629x5 - 1158x4 + 1776x3 - 1711x2 - 86x + 293 |
\( 7^{12}\cdot 53^{6}\cdot 97^{3} \) |
18T367 |
Trivial
(GRH)
|
| 18.10.279992823820843547402730217.6 |
x18 - 5x17 + 14x16 - 26x15 + 40x14 - 25x13 - 166x12 + 259x11 + 8x10 + 227x9 - 177x8 - 468x7 - 151x6 + 102x5 + 1227x4 - 1051x3 + 150x2 + 48x - 8 |
\( 7^{12}\cdot 53^{6}\cdot 97^{3} \) |
18T367 |
Trivial
(GRH)
|
| 18.10.279992823820843547402730217.7 |
x18 - 4x17 - 6x16 + 48x15 - 22x14 - 306x13 + 687x12 + 346x11 - 3471x10 + 4492x9 + 2094x8 - 12089x7 + 13476x6 - 2955x5 - 8918x4 + 11417x3 - 6158x2 + 1494x - 127 |
\( 7^{12}\cdot 53^{6}\cdot 97^{3} \) |
18T367 |
Trivial
(GRH)
|
| 18.14.374529353033905727790624768.1 |
x18 - 21x16 + 159x14 - 534x12 + 783x10 - 351x8 - 186x6 + 126x4 + 27x2 - 3 |
\( 2^{12}\cdot 3^{31}\cdot 23^{6} \) |
18T367 |
Trivial
(GRH)
|
| 18.10.431008431261766353738330112.1 |
x18 - 6x17 + 8x16 + 4x15 + 59x13 - 237x12 + 77x11 - 47x10 - 128x9 + 1174x8 + 613x7 + 2819x6 + 1007x5 - 6422x4 - 3110x3 + 2151x2 + 1141x + 127 |
\( 2^{12}\cdot 7^{15}\cdot 53^{6} \) |
18T367 |
Trivial
(GRH)
|
| 18.10.23969878594169966578599985152.2 |
x18 - 6x16 - 39x14 + 225x12 + 63x10 - 954x8 + 219x6 + 837x4 + 18x2 - 3 |
\( 2^{18}\cdot 3^{31}\cdot 23^{6} \) |
18T367 |
Trivial
(GRH)
|
| 18.6.27584539600753046639253127168.2 |
x18 - 84x14 - 133x12 + 1470x10 + 3626x8 + 98x6 - 3430x4 - 2058x2 - 343 |
\( 2^{18}\cdot 7^{15}\cdot 53^{6} \) |
18T367 |
$[3]$
(GRH)
|
| 18.18.5859310385512135682657773056000.1 |
x18 - 27x16 + 300x14 - 1790x12 + 6291x10 - 13431x8 + 17229x6 - 12465x4 + 4275x2 - 375 |
\( 2^{12}\cdot 3^{27}\cdot 5^{3}\cdot 107^{6} \) |
18T367 |
Trivial
(GRH)
|
| 18.0.374995864672776683690097475584000.2 |
x18 + 27x16 + 300x14 + 1790x12 + 6291x10 + 13431x8 + 17229x6 + 12465x4 + 4275x2 + 375 |
\( -\,2^{18}\cdot 3^{27}\cdot 5^{3}\cdot 107^{6} \) |
18T367 |
$[2, 2, 2, 308]$
(GRH)
|
| 18.0.2197241394567050880996664896000000.1 |
x18 + 60x16 + 1446x14 + 18129x12 + 128115x10 + 518625x8 + 1174125x6 + 1395000x4 + 759375x2 + 140625 |
\( -\,2^{12}\cdot 3^{28}\cdot 5^{6}\cdot 107^{6} \) |
18T367 |
$[2, 2, 2, 2, 234]$
(GRH)
|
| 18.18.21533721517796829699270378833524224000.1 |
x18 - 6x17 - 117x16 + 465x15 + 5862x14 - 10131x13 - 145764x12 - 144x11 + 1674201x10 + 1584665x9 - 8873151x8 - 14087169x7 + 18694341x6 + 46353909x5 + 1448733x4 - 50506104x3 - 38221929x2 - 9510045x - 748889 |
\( 2^{12}\cdot 3^{28}\cdot 5^{3}\cdot 107^{9} \) |
18T367 |
$[2]$
(GRH)
|
| 18.6.942819848193609840687974907102210439895572587925346415773774975512194250487088577864864491634688.1 |
x18 - 3x17 - 110009x16 - 420247x15 - 26263575365151x14 + 8719298212681x13 - 12678041586512218435x12 - 26520038102507345266x11 + 139453806233738140457035919x10 + 55190047388430672473829978x9 + 64127500067567672210113192016071x8 + 92121681187422666981446315674465x7 - 151598241744733087793935723174433912300x6 + 146766608109376391818601408527495645699x5 - 92669376387470507266894761432746902716244828x4 + 33938889013804454452366470187426747044564156x3 - 7061076813892402666516903285104273235291684444633x2 - 7057658029331335780862638248457904544709912039255x - 43284022940453129650220335064830179172451149811669251 |
\( 2^{18}\cdot 7^{12}\cdot 41^{7}\cdot 73^{12}\cdot 4794733^{7} \) |
18T367 |
n/a |
| 18.6.482723762275128238432243152436331745226533165017777364876172787462243456249389351866810619716960256.1 |
x18 - 880078x16 - 1680868814732124x14 - 6491171775323056058112x12 + 571202758172120436138505554688x10 + 2101331127688893246617404284940269600x8 - 39740590777288682761741193269763171314300992x6 - 194342072854326719718697440564251332822089823755648x4 - 118466545789750935481669175656525993295564503629319250432x2 - 5809087981107339675113004179528265318506584446591366395820544 |
\( 2^{27}\cdot 7^{12}\cdot 41^{7}\cdot 73^{12}\cdot 4794733^{7} \) |
18T367 |
n/a |