| 18.12.250188053022644984299584.1 |
x18 - 3x16 - 27x14 + 113x12 + 15x10 - 465x8 + 366x6 + 102x4 - 39x2 + 1 |
\( -\,2^{6}\cdot 3^{24}\cdot 7^{12} \) |
$C_6\times A_4$ (as 18T25) |
Trivial
(GRH)
|
| 18.6.488648541059853484960125.1 |
x18 - 3x16 - 2x15 - 18x14 + 84x13 - 105x12 + 6x11 + 126x10 - 302x9 + 261x8 + 36x7 - 217x6 - 6x5 - 60x4 - 143x3 - 75x2 - 15x - 1 |
\( 3^{24}\cdot 5^{3}\cdot 7^{12} \) |
$C_6\times A_4$ (as 18T25) |
Trivial
|
| 18.6.2001504424181159874396672.1 |
x18 + 6x16 - 15x14 - 106x12 + 90x10 + 528x8 - 347x6 - 420x4 - 108x2 - 8 |
\( 2^{9}\cdot 3^{24}\cdot 7^{12} \) |
$C_6\times A_4$ (as 18T25) |
Trivial
|
| 18.12.20638431194470706090603584.1 |
x18 - 9x16 - 8x14 + 249x12 - 515x10 - 715x8 + 3237x6 - 3320x4 + 1078x2 + 1 |
\( -\,2^{6}\cdot 7^{12}\cdot 13^{12} \) |
$C_6\times A_4$ (as 18T25) |
Trivial
(GRH)
|
| 18.18.128096283147594231961387008.1 |
x18 - 24x16 + 207x14 - 876x12 + 2046x10 - 2748x8 + 2099x6 - 852x4 + 156x2 - 8 |
\( 2^{15}\cdot 3^{24}\cdot 7^{12} \) |
$C_6\times A_4$ (as 18T25) |
Trivial
(GRH)
|
| 18.18.1284203548600251267926125629.1 |
x18 - 3x17 - 27x16 + 86x15 + 198x14 - 618x13 - 806x12 + 1917x11 + 2124x10 - 2696x9 - 3204x8 + 1365x7 + 2209x6 + 24x5 - 561x4 - 123x3 + 30x2 + 12x + 1 |
\( 3^{27}\cdot 7^{12}\cdot 23^{3} \) |
$C_6\times A_4$ (as 18T25) |
Trivial
(GRH)
|
| 18.0.1399141503834185765244506391.1 |
x18 - 3x17 + 15x16 - 53x15 + 207x14 - 648x13 + 1867x12 - 5094x11 + 12642x10 - 27983x9 + 54783x8 - 96642x7 + 152588x6 - 201378x5 + 203559x4 - 147022x3 + 71619x2 - 21321x + 3079 |
\( -\,3^{24}\cdot 7^{12}\cdot 71^{3} \) |
$C_6\times A_4$ (as 18T25) |
$[2, 10]$
|
| 18.0.1399141503834185765244506391.2 |
x18 - 3x17 + 27x16 - 52x15 + 249x14 - 378x13 + 1144x12 - 1320x11 + 2610x10 - 2630x9 + 3594x8 - 2052x7 + 2454x6 - 1296x5 + 1647x4 - 963x3 + 567x2 - 162x + 27 |
\( -\,3^{24}\cdot 7^{12}\cdot 71^{3} \) |
$C_6\times A_4$ (as 18T25) |
$[2, 14]$
|