| 18.0.16736565124800000000.1 |
x18 - 3x17 + 9x16 - 18x15 + 39x14 - 69x13 + 109x12 - 129x11 + 126x10 - 92x9 + 69x8 - 45x7 + 37x6 - 15x5 + 9x4 - x3 + 3x2 + 1 |
\( -\,2^{12}\cdot 3^{21}\cdot 5^{8} \) |
$C_3^2:S_3$ (as 18T24) |
Trivial
|
| 18.0.129140163000000000000.1 |
x18 - 7x15 + 26x12 - 13x9 + 26x6 - 7x3 + 1 |
\( -\,2^{12}\cdot 3^{17}\cdot 5^{12} \) |
$C_3^2:S_3$ (as 18T24) |
Trivial
|
| 18.0.653772075187500000000.1 |
x18 - 3x17 + 6x16 - 11x15 + 21x14 - 39x13 + 60x12 - 78x11 + 93x10 - 111x9 + 126x8 - 81x7 + 38x6 + 15x5 + 21x4 - 4x3 - 3x2 + 1 |
\( -\,2^{8}\cdot 3^{21}\cdot 5^{12} \) |
$C_3^2:S_3$ (as 18T24) |
Trivial
|
| 18.0.9184336312155528572928.2 |
x18 - 6x17 + 24x16 - 76x15 + 207x14 - 474x13 + 927x12 - 1560x11 + 2301x10 - 2970x9 + 3360x8 - 3294x7 + 2810x6 - 2088x5 + 1371x4 - 770x3 + 357x2 - 120x + 25 |
\( -\,2^{12}\cdot 3^{21}\cdot 11^{8} \) |
$C_3^2:S_3$ (as 18T24) |
Trivial
|
| 18.0.16599265906765726789632.3 |
x18 - 3x15 + 6x12 - 5x9 + 6x6 - 3x3 + 1 |
\( -\,2^{12}\cdot 3^{39} \) |
$C_3^2:S_3$ (as 18T24) |
Trivial
(GRH)
|
| 18.0.16599265906765726789632.6 |
x18 - 3x15 + 5x9 - 3x3 + 1 |
\( -\,2^{12}\cdot 3^{39} \) |
$C_3^2:S_3$ (as 18T24) |
Trivial
(GRH)
|
| 18.0.16599265906765726789632.7 |
x18 + 3x12 - 4x9 + 3x6 + 1 |
\( -\,2^{12}\cdot 3^{39} \) |
$C_3^2:S_3$ (as 18T24) |
Trivial
(GRH)
|
| 18.0.84033783653001491872512.1 |
x18 - 21x15 + 159x12 - 430x9 + 636x6 - 336x3 + 64 |
\( -\,2^{8}\cdot 3^{43} \) |
$C_3^2:S_3$ (as 18T24) |
Trivial
|
| 18.0.84033783653001491872512.2 |
x18 - 15x15 + 87x12 - 2x9 + 348x6 - 240x3 + 64 |
\( -\,2^{8}\cdot 3^{43} \) |
$C_3^2:S_3$ (as 18T24) |
Trivial
|
| 18.0.298880559887628015710208.2 |
x18 - 3x17 + 11x15 - 9x13 - 141x12 + 132x11 + 546x10 - 660x9 - 768x8 + 1344x7 + 644x6 - 2184x5 + 480x4 + 1504x3 - 768x2 - 384x + 256 |
\( -\,2^{12}\cdot 3^{21}\cdot 17^{8} \) |
$C_3^2:S_3$ (as 18T24) |
Trivial
|
| 18.0.555906056655552300000000.1 |
x18 - 6x17 + 21x16 - 74x15 + 252x14 - 693x13 + 1644x12 - 3627x11 + 7065x10 - 11348x9 + 14961x8 - 16377x7 + 14878x6 - 11286x5 + 7254x4 - 3669x3 + 1539x2 - 585x + 201 |
\( -\,2^{8}\cdot 3^{33}\cdot 5^{8} \) |
$C_3^2:S_3$ (as 18T24) |
Trivial
|
| 18.0.847288609443000000000000.2 |
x18 - 2x17 - 2x16 + 10x15 + 24x14 - 43x13 - 69x12 + 156x11 + 130x10 - 680x9 + 805x8 - 450x7 + 175x6 - 6x5 - 60x4 - 3x3 + 3x2 + 9x + 3 |
\( -\,2^{12}\cdot 3^{25}\cdot 5^{12} \) |
$C_3^2:S_3$ (as 18T24) |
Trivial
|
| 18.0.847288609443000000000000.3 |
x18 - 4x15 + x12 - 36x9 + 183x6 + 144x3 + 27 |
\( -\,2^{12}\cdot 3^{25}\cdot 5^{12} \) |
$C_3^2:S_3$ (as 18T24) |
Trivial
(GRH)
|
| 18.0.847288609443000000000000.4 |
x18 - x15 + 16x12 + 21x9 + 48x6 - 9x3 + 27 |
\( -\,2^{12}\cdot 3^{25}\cdot 5^{12} \) |
$C_3^2:S_3$ (as 18T24) |
Trivial
|
| 18.0.988277434054315200000000.1 |
x18 - 9x17 + 57x16 - 252x15 + 870x14 - 2394x13 + 5430x12 - 10272x11 + 16395x10 - 22135x9 + 24795x8 - 22344x7 + 15654x6 - 8202x5 + 2970x4 - 576x3 - 3x2 + 15x + 1 |
\( -\,2^{12}\cdot 3^{31}\cdot 5^{8} \) |
$C_3^2:S_3$ (as 18T24) |
$[3]$
|
| 18.0.1344540538448023869960192.4 |
x18 - 24x15 + 195x12 - 236x9 + 195x6 - 24x3 + 1 |
\( -\,2^{12}\cdot 3^{43} \) |
$C_3^2:S_3$ (as 18T24) |
Trivial
|
| 18.0.1344540538448023869960192.5 |
x18 - 9x17 + 45x16 - 156x15 + 423x14 - 945x13 + 1815x12 - 3051x11 + 4572x10 - 6118x9 + 7425x8 - 8145x7 + 8241x6 - 7497x5 + 6111x4 - 4125x3 + 2223x2 - 810x + 175 |
\( -\,2^{12}\cdot 3^{43} \) |
$C_3^2:S_3$ (as 18T24) |
Trivial
|
| 18.0.1344540538448023869960192.6 |
x18 - 9x17 + 45x16 - 156x15 + 405x14 - 819x13 + 1311x12 - 1665x11 + 1674x10 - 1330x9 + 837x8 - 423x7 + 159x6 - 9x5 - 27x4 - 3x3 + 45x2 - 36x + 13 |
\( -\,2^{12}\cdot 3^{43} \) |
$C_3^2:S_3$ (as 18T24) |
Trivial
|
| 18.0.1344540538448023869960192.7 |
x18 - 12x15 + 69x12 - 232x9 + 159x6 + 708x3 + 343 |
\( -\,2^{12}\cdot 3^{43} \) |
$C_3^2:S_3$ (as 18T24) |
Trivial
|
| 18.0.3355281677165339463856128.2 |
x18 + 9x16 - 14x15 + 66x14 - 69x13 + 128x12 + 24x11 + 24x10 + 57x9 + 429x8 - 714x7 + 1095x6 - 849x5 + 483x4 - 187x3 + 54x2 - 9x + 1 |
\( -\,2^{12}\cdot 3^{21}\cdot 23^{8} \) |
$C_3^2:S_3$ (as 18T24) |
Trivial
|
| 18.0.4219225854723000000000000.1 |
x18 - 4x17 + 11x16 - 30x15 + 70x14 - 159x13 + 226x12 - 334x11 + 690x10 - 675x9 + 761x8 - 1054x7 + 1011x6 - 825x5 + 555x4 - 565x3 + 500x2 - 125x + 25 |
\( -\,2^{12}\cdot 3^{9}\cdot 5^{12}\cdot 11^{8} \) |
$C_3^2:S_3$ (as 18T24) |
Trivial
|
| 18.0.7625597484987000000000000.2 |
x18 - 8x15 + 11x12 + 28x9 + 11x6 - 8x3 + 1 |
\( -\,2^{12}\cdot 3^{27}\cdot 5^{12} \) |
$C_3^2:S_3$ (as 18T24) |
Trivial
(GRH)
|
| 18.0.7625597484987000000000000.3 |
x18 - x15 + 20x12 + 35x9 + 20x6 - x3 + 1 |
\( -\,2^{12}\cdot 3^{27}\cdot 5^{12} \) |
$C_3^2:S_3$ (as 18T24) |
Trivial
(GRH)
|
| 18.0.8404241746641818364764928.1 |
x18 - 3x17 + 23x15 - 9x14 - 87x13 + 64x12 + 276x11 - 144x10 - 608x9 + 297x8 + 1794x7 + 1285x6 - 1485x5 - 2817x4 - 651x3 + 1647x2 + 1425x + 361 |
\( -\,2^{8}\cdot 3^{21}\cdot 11^{12} \) |
$C_3^2:S_3$ (as 18T24) |
$[2, 2]$
|
| 18.0.8894496906488836800000000.1 |
x18 - 6x17 + 15x16 - 26x15 + 30x14 + 72x13 - 275x12 + 114x11 + 462x10 - 328x9 - 243x8 + 150x7 - 107x6 + 114x5 + 366x4 + 228x3 + 156x2 + 108x + 28 |
\( -\,2^{12}\cdot 3^{33}\cdot 5^{8} \) |
$C_3^2:S_3$ (as 18T24) |
Trivial
|
| 18.0.21433361072561590534483968.1 |
x18 + 9x16 - 2x15 + 48x14 - 33x13 + 254x12 - 372x11 + 924x10 - 993x9 + 1437x8 - 1272x7 + 1431x6 - 993x5 + 555x4 - 199x3 + 54x2 - 9x + 1 |
\( -\,2^{12}\cdot 3^{21}\cdot 29^{8} \) |
$C_3^2:S_3$ (as 18T24) |
Trivial
(GRH)
|
| 18.0.36542633964773200992350208.1 |
x18 + 9x16 - 2x15 + 42x14 + 21x13 + 312x12 + 552x11 + 1320x10 + 1455x9 + 1869x8 + 1506x7 + 1559x6 + 1041x5 + 579x4 + 203x3 + 54x2 + 9x + 1 |
\( -\,2^{12}\cdot 3^{21}\cdot 31^{8} \) |
$C_3^2:S_3$ (as 18T24) |
Trivial
(GRH)
|
| 18.0.36542633964773200992350208.2 |
x18 - 21x16 - 14x15 + 174x14 + 345x13 - 40x12 - 882x11 - 1344x10 + 61x9 + 2373x8 + 1386x7 - 409x6 + 183x5 - 501x4 - 869x3 + 492x2 + 45x + 1 |
\( -\,2^{12}\cdot 3^{21}\cdot 31^{8} \) |
$C_3^2:S_3$ (as 18T24) |
$[2, 2]$
(GRH)
|
| 18.0.36542633964773200992350208.3 |
x18 - 6x17 - 3x16 + 68x15 + 12x14 - 579x13 + 346x12 + 2376x11 - 2700x10 - 4481x9 + 7767x8 + 2976x7 - 10499x6 + 741x5 + 6063x4 - 345x3 + 198x2 - 3x + 1 |
\( -\,2^{12}\cdot 3^{21}\cdot 31^{8} \) |
$C_3^2:S_3$ (as 18T24) |
Trivial
(GRH)
|
| 18.0.38604587267746687500000000.1 |
x18 - 21x15 + 195x12 - 340x9 + 3120x6 - 5376x3 + 4096 |
\( -\,2^{8}\cdot 3^{31}\cdot 5^{12} \) |
$C_3^2:S_3$ (as 18T24) |
$[3]$
(GRH)
|
| 18.0.38778658112119365306896643.1 |
x18 - 3x17 - 6x16 + 41x15 + 9x14 - 369x13 + 780x12 + 270x11 - 3168x10 + 2630x9 + 10344x8 - 33267x7 + 46231x6 - 34002x5 + 13104x4 - 3000x3 + 2160x2 - 1728x + 576 |
\( -\,3^{33}\cdot 17^{8} \) |
$C_3^2:S_3$ (as 18T24) |
Trivial
(GRH)
|
| 18.0.48036106180347836985520128.1 |
x18 - 6x17 + 22x16 - 70x15 + 202x14 - 488x13 + 923x12 - 1110x11 + 298x10 + 1736x9 - 3170x8 + 1954x7 + 839x6 - 2148x5 + 1588x4 - 730x3 + 220x2 - 26x + 1 |
\( -\,2^{12}\cdot 3^{25}\cdot 7^{12} \) |
$C_3^2:S_3$ (as 18T24) |
$[3]$
(GRH)
|
| 18.0.48036106180347836985520128.2 |
x18 + x16 - 2x15 + 10x14 - 25x13 - 80x12 - 102x11 + 108x10 + 363x9 + 375x8 + 30x7 - 165x6 - 117x5 + 261x4 + 675x3 + 846x2 + 585x + 225 |
\( -\,2^{12}\cdot 3^{25}\cdot 7^{12} \) |
$C_3^2:S_3$ (as 18T24) |
$[3]$
(GRH)
|
| 18.0.128225377888491045948046875.1 |
x18 - 9x17 + 45x16 - 156x15 + 468x14 - 1260x13 + 3030x12 - 6246x11 + 10674x10 - 14848x9 + 20736x8 - 31284x7 + 47481x6 - 59265x5 + 52641x4 - 31188x3 + 11772x2 - 2592x + 256 |
\( -\,3^{43}\cdot 5^{8} \) |
$C_3^2:S_3$ (as 18T24) |
Trivial
(GRH)
|
| 18.0.128225377888491045948046875.2 |
x18 - 9x15 - 54x14 + 72x13 + 387x12 - 540x11 - 1836x10 + 960x9 + 5346x8 + 972x7 - 4617x6 + 162x5 + 11556x4 + 15660x3 + 13284x2 + 8424x + 3303 |
\( -\,3^{43}\cdot 5^{8} \) |
$C_3^2:S_3$ (as 18T24) |
Trivial
(GRH)
|
| 18.0.131264011932220807356100608.1 |
x18 - 6x17 + 21x16 - 68x15 + 168x14 - 306x13 + 573x12 - 924x11 + 1896x10 - 3246x9 + 5061x8 - 7056x7 + 4823x6 + 7056x5 - 12348x4 - 4900x3 + 12348x2 + 8232x + 1372 |
\( -\,2^{12}\cdot 3^{33}\cdot 7^{8} \) |
$C_3^2:S_3$ (as 18T24) |
Trivial
(GRH)
|
| 18.0.131264011932220807356100608.2 |
x18 - 3x17 + 6x16 - 13x15 + 33x14 - 75x13 + 169x12 - 324x11 + 657x10 - 933x9 + 1458x8 - 2430x7 + 3348x6 - 3969x5 + 5994x4 - 4104x3 + 2187x2 - 486x + 81 |
\( -\,2^{12}\cdot 3^{33}\cdot 7^{8} \) |
$C_3^2:S_3$ (as 18T24) |
Trivial
(GRH)
|
| 18.0.137303833711203000000000000.1 |
x18 + 9x16 - 26x15 + 84x14 - 105x13 + 74x12 + 204x11 - 444x10 + 603x9 - 147x8 - 372x7 + 831x6 - 705x5 + 411x4 - 175x3 + 54x2 - 9x + 1 |
\( -\,2^{12}\cdot 3^{9}\cdot 5^{12}\cdot 17^{8} \) |
$C_3^2:S_3$ (as 18T24) |
Trivial
(GRH)
|
| 18.0.305058304629265391270339328.1 |
x18 - 3x17 + 9x16 + 26x15 - 51x14 + 84x13 + 257x12 - 234x11 + 312x10 + 848x9 - 156x8 + 468x7 + 716x6 + 336x5 + 264x4 - 208x3 + 144x2 - 48x + 16 |
\( -\,2^{8}\cdot 3^{33}\cdot 11^{8} \) |
$C_3^2:S_3$ (as 18T24) |
$[3]$
(GRH)
|
| 18.0.342118966051435975575810048.1 |
x18 - 3x17 + 12x16 - 59x15 + 165x14 - 525x13 + 943x12 - 2742x11 + 6411x10 - 2941x9 + 15204x8 - 9576x7 + 17236x6 - 14751x5 + 18666x4 - 12948x3 + 8751x2 - 2958x + 841 |
\( -\,2^{12}\cdot 3^{21}\cdot 41^{8} \) |
$C_3^2:S_3$ (as 18T24) |
$[7]$
(GRH)
|
| 18.0.347441285409720187500000000.1 |
x18 - 6x17 + 3x16 + 55x15 - 111x14 - 99x13 + 525x12 - 600x11 - 732x10 + 2877x9 - 510x8 - 2421x7 + 8909x6 + 9540x5 + 5868x4 + 20930x3 + 37548x2 + 26412x + 6412 |
\( -\,2^{8}\cdot 3^{33}\cdot 5^{12} \) |
$C_3^2:S_3$ (as 18T24) |
$[2, 2]$
(GRH)
|
| 18.0.405255515301897626700000000.1 |
x18 + 9x16 + 45x14 - 27x13 + 282x12 - 459x11 + 1116x10 - 1217x9 + 1647x8 - 1386x7 + 1494x6 - 1017x5 + 567x4 - 201x3 + 54x2 - 9x + 1 |
\( -\,2^{8}\cdot 3^{39}\cdot 5^{8} \) |
$C_3^2:S_3$ (as 18T24) |
$[3]$
(GRH)
|
| 18.0.493649185212973862185233123.1 |
x18 - 17x15 + 196x12 - 561x9 + 588x6 - 153x3 + 27 |
\( -\,3^{25}\cdot 17^{12} \) |
$C_3^2:S_3$ (as 18T24) |
Trivial
(GRH)
|
| 18.0.500788032352702912536588288.1 |
x18 - 6x17 + 9x16 - 2x15 + 54x14 - 333x13 + 788x12 - 1152x11 + 2886x10 - 7743x9 + 17385x8 - 27198x7 + 42489x6 - 41841x5 + 38337x4 - 13723x3 + 23406x2 + 8175x + 11881 |
\( -\,2^{12}\cdot 3^{21}\cdot 43^{8} \) |
$C_3^2:S_3$ (as 18T24) |
Trivial
(GRH)
|
| 18.0.500788032352702912536588288.2 |
x18 + 9x16 - 10x15 + 42x14 - 81x13 + 268x12 - 348x11 + 1230x10 - 1691x9 + 3147x8 - 5790x7 + 6691x6 - 9051x5 + 8091x4 - 7947x3 + 6420x2 + 885x + 3481 |
\( -\,2^{12}\cdot 3^{21}\cdot 43^{8} \) |
$C_3^2:S_3$ (as 18T24) |
Trivial
(GRH)
|
| 18.0.500788032352702912536588288.3 |
x18 - 6x17 + 15x16 + 2x15 - 309x13 + 936x12 + 24x11 - 3414x10 + 2735x9 + 3279x8 - 2358x7 - 3449x6 + 1149x5 + 3897x4 - 5193x3 + 3618x2 - 729x + 81 |
\( -\,2^{12}\cdot 3^{21}\cdot 43^{8} \) |
$C_3^2:S_3$ (as 18T24) |
Trivial
(GRH)
|
| 18.0.542325874896471806702825472.1 |
x18 - 3x17 + 42x16 - 105x15 + 744x14 - 1539x13 + 7281x12 - 12222x11 + 43344x10 - 57312x9 + 163224x8 - 165024x7 + 393744x6 - 293184x5 + 594432x4 - 304128x3 + 516096x2 - 147456x + 196608 |
\( -\,2^{12}\cdot 3^{31}\cdot 11^{8} \) |
$C_3^2:S_3$ (as 18T24) |
$[3]$
(GRH)
|
| 18.0.547429103383751426513671875.1 |
x18 - 6x17 + 12x16 - 9x14 - 63x13 + 351x12 - 873x11 + 1341x10 - 2241x9 + 2970x8 - 1890x7 - 378x6 + 1809x5 + 2214x4 + 1458x3 + 891x2 + 243x + 27 |
\( -\,3^{21}\cdot 5^{12}\cdot 11^{8} \) |
$C_3^2:S_3$ (as 18T24) |
Trivial
(GRH)
|
| 18.0.617673396283947000000000000.2 |
x18 - 11x15 + 46x12 - 99x9 + 138x6 - 99x3 + 27 |
\( -\,2^{12}\cdot 3^{31}\cdot 5^{12} \) |
$C_3^2:S_3$ (as 18T24) |
$[3]$
(GRH)
|
| 18.0.617673396283947000000000000.3 |
x18 - 10x15 + 49x12 - 120x9 + 147x6 - 90x3 + 27 |
\( -\,2^{12}\cdot 3^{31}\cdot 5^{12} \) |
$C_3^2:S_3$ (as 18T24) |
Trivial
(GRH)
|